分析 (1)作DF∥BC交AC于F,由平行線的性質(zhì)得出∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,證明△ABC是等邊三角形,得出∠ABC=∠ACB=60°,證出△ADF是等邊三角形,∠DFC=120°,得出AD=DF,由已知條件得出∠FDC=∠DEC,ED=CD,由AAS證明△DBE≌△CFD,得出EB=DF,即可得出結(jié)論;
(2)作DF∥BC交AC的延長線于F,同(1)證出△DBE≌△CFD,得出EB=DF,即可得出結(jié)論;
(3)作DF∥BC交AC于F,同(1)得:△DBE≌△CFD,得出EB=DF,證出△ADF是等腰直角三角形,得出DF=$\sqrt{2}$AD,即可得出結(jié)果.
解答 (1)
證明:作DF∥BC交AC于F,如圖1所示:
則∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,
∵△ABC是等腰三角形,∠A=60°,
∴△ABC是等邊三角形,
∴∠ABC=∠ACB=60°,
∴∠DBE=120°,∠ADF=∠AFD=60°=∠A,
∴△ADF是等邊三角形,∠DFC=120°,
∴AD=DF,
∵∠DEC=∠DCE,
∴∠FDC=∠DEC,ED=CD,
在△DBE和△CFD中,$\left\{\begin{array}{l}{∠DEC=∠FDC}&{\;}\\{∠DBE=∠DFC=120°}&{\;}\\{ED=CD}&{\;}\end{array}\right.$,![]()
∴△DBE≌△CFD(AAS),
∴EB=DF,
∴EB=AD;
(2)解:EB=AD成立;理由如下:
作DF∥BC交AC的延長線于F,如圖2所示:
同(1)得:AD=DF,∠FDC=∠ECD,∠FDC=∠DEC,ED=CD,
又∵∠DBE=∠DFC=60°,
∴在△DBE和△CFD中,$\left\{\begin{array}{l}{∠DEC=∠FDC}&{\;}\\{∠DBE=∠DFC}&{\;}\\{ED=CD}&{\;}\end{array}\right.$,
∴△DBE≌△CFD(AAS),![]()
∴EB=DF,
∴EB=AD;
(3)解:$\frac{EB}{AD}$=$\sqrt{2}$;理由如下:
作DF∥BC交AC于F,如圖3所示:
同(1)得:△DBE≌△CFD(AAS),
∴EB=DF,
∵△ABC是等腰直角三角形,DF∥BC,
∴△ADF是等腰直角三角形,
∴DF=$\sqrt{2}$AD,
∴$\frac{DF}{AD}$=$\sqrt{2}$,
∴$\frac{EB}{AD}$=$\sqrt{2}$.
點評 本題是三角形綜合題目,考查了等邊三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、等腰三角形的判定與性質(zhì)、等腰直角三角形的判定與性質(zhì)、平行線的性質(zhì)等知識;本題綜合性強,有一定難度,證明三角形全等是解決問題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | p | B. | q | C. | m | D. | n |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | (3,2) | B. | (3,1) | C. | (2,2) | D. | (4,2) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com