分析 (1)①當(dāng)AC=BC=2時(shí),△ABC為等腰直角三角形;
②若△CEF與△ABC相似,分兩種情況:①若CE:CF=3:4,如圖1所示,此時(shí)EF∥AB,CD為AB邊上的高;②若CF:CE=3:4,如圖2所示.由相似三角形角之間的關(guān)系,可以推出∠A=∠ECD與∠B=∠FCD,從而得到CD=AD=BD,即D點(diǎn)為AB的中點(diǎn);
(2)當(dāng)點(diǎn)D是AB的中點(diǎn)時(shí),△CEF與△ABC相似.可以推出∠CFE=∠A,∠C=∠C,從而可以證明兩個(gè)三角形相似.
解答
解:(1)若△CEF與△ABC相似.
當(dāng)AC=BC=2時(shí),△ABC為等腰直角三角形,如圖1所示.
此時(shí)D為AB邊中點(diǎn),AD=$\frac{\sqrt{2}}{2}$AC=$\sqrt{2}$;
故答案為:$\sqrt{2}$;
②若△CEF與△ABC相似,分兩種情況:
①若CE:CF=3:4,如圖1所示.
∵CE:CF=AC:BC,
∴EF∥AB.
由折疊性質(zhì)可知,CD⊥EF,
∴CD⊥AB,即此時(shí)CD為AB邊上的高.
在Rt△ABC中,∵∠ACB=90°,AC=3,BC=4,
∴AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=5,
∴cosA=$\frac{AC}{AB}$=$\frac{3}{5}$,
∴AD=AC•cosA=3×$\frac{3}{5}$=1.8;
②若CF:CE=3:4,如圖2所示.
∵△CEF∽△CBA,
∴∠CEF=∠B.
由折疊性質(zhì)可知,∠CEF+∠ECD=90°,
又∵∠A+∠B=90°,
∴∠A=∠ECD,
∴AD=CD.
同理可得:∠B=∠FCD,CD=BD,
∴D點(diǎn)為AB的中點(diǎn),
∴AD=$\frac{1}{2}$AB=$\frac{1}{2}$×5=2.5.
綜上所述,AD的長(zhǎng)為1.8或2.5.
故答案為:1.8或2.5.
(2)當(dāng)點(diǎn)D是AB的中點(diǎn)時(shí),△CEF與△CBA相似.理由如下:
如答圖2所示,連接CD,與EF交于點(diǎn)Q.
∵CD是Rt△ABC的中線
∴CD=DB=$\frac{1}{2}$AB,
∴∠DCB=∠B.
由折疊性質(zhì)可知,∠CQF=∠DQF=90°,
∴∠DCB+∠CFE=90°,
∵∠B+∠A=90°,
∴∠CFE=∠A,
又∵∠ACB=∠ACB,
∴△CEF∽△CBA.
點(diǎn)評(píng) 本題考查了相似三角形的判定與性質(zhì)、直角三角形斜邊上的中線性質(zhì)、等腰直角三角形的性質(zhì)、勾股定理等知識(shí);熟練掌握相似三角形的判定與性質(zhì)是解決問(wèn)題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 110° | B. | 120° | C. | 130° | D. | 140° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com