分析 (1)要證明無論k為何值時(shí),方程總有兩個(gè)不相等的實(shí)數(shù)根,就是證明△>0,而△=(2k+3)2-4(k2+3k+2)=1,所以△>0;
(2)根據(jù)等腰三角形的性質(zhì),分三種情況討論:①AB=AC,②AB=BC,③BC=AC;后兩種情況相同,則可分兩種情況,再由根與系數(shù)的關(guān)系得出k的值.
解答 (1)證明:∵△=(2k+3)2-4(k2+3k+2)=1,
∴△>0,
∴無論k取何值時(shí),方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2﹚解:∵△ABC是等腰三角形;
∴當(dāng)AB=AC時(shí),△=b2-4ac=0,
∴(2k+3)2-4(k2+3k+2)=0,
解得k不存在;
當(dāng)AB=BC時(shí),即AB=5,
∴5+AC=2k+3,5AC=k2+3k+2,
解得k=3或4,
∴AC=4或6.
∴△ABC的周長為14或16.
點(diǎn)評(píng) 本題考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c為常數(shù))的根的判別式△=b2-4ac.當(dāng)△>0,方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△=0,方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)△<0,方程沒有實(shí)數(shù)根.同時(shí)考查了一元二次方程的解法.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | y=kx | B. | y=2x-1 | C. | y=$\sqrt{2}$x | D. | y=2x2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | (m+n)(m3+m2n+n3) | B. | (m-n)(m2+n2) | C. | (x+1)(x2-x+1) | D. | (x2+1)(x2-x+1) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 40° | B. | 50° | C. | 60° | D. | 70° |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com