欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

18.從反思中總結(jié)基本活動(dòng)經(jīng)驗(yàn)是一個(gè)重要的學(xué)習(xí)方法.例如,我們?cè)谌葘W(xué)習(xí)中所總結(jié)的“一線三等角、K型全等”這一基本圖形,可以使得我們?cè)谟^察新問(wèn)題的時(shí)候很迅速地聯(lián)想,從而借助已有經(jīng)驗(yàn),迅速解決問(wèn)題.
(1)如圖1,在平面直角坐標(biāo)系中,四邊形OBCD是正方形,且D(0,2),點(diǎn)E是線段OB延長(zhǎng)線上一點(diǎn),M是線段OB上一動(dòng)點(diǎn)(不包括點(diǎn)O、B),作MN⊥DM,垂足為M,且MN=DM.設(shè)OM=a,請(qǐng)你利用基本活動(dòng)經(jīng)驗(yàn)直接寫(xiě)出點(diǎn)N的坐標(biāo)(2+a,a)(用含a的代數(shù)式表示);
(2)基本經(jīng)驗(yàn)有利有弊,當(dāng)基本經(jīng)驗(yàn)有利于新問(wèn)題解決的時(shí)候,這是基本經(jīng)驗(yàn)的正遷移;當(dāng)基本經(jīng)驗(yàn)所形成的思維定勢(shì)局限了新問(wèn)題的思考,讓新問(wèn)題解決不出來(lái)的時(shí)候,這是基本經(jīng)驗(yàn)的負(fù)遷移.例如,如果(1)的條件去掉“且MN=DM”,加上“交∠CBE的平分線與點(diǎn)N”,如圖2,求證:MD=MN.如何突破這種定勢(shì),獲得問(wèn)題的解決,請(qǐng)你寫(xiě)出你的證明過(guò)程.
(3)如圖3,請(qǐng)你繼續(xù)探索:連接DN交BC于點(diǎn)F,連接FM,下列兩個(gè)結(jié)論:①FM的長(zhǎng)度不變;②MN平分∠FMB,請(qǐng)你指出正確的結(jié)論,并給出證明.

分析 (1)如圖1中,作NE⊥OB于E,只要證明△DMO△MNE即可解決問(wèn)題.
(2)如圖2中,在OD上取OH=OM,連接HM,只要證明△DHM≌△MBN即可.
(3)結(jié)論:MN平分∠FMB成立.如圖3中,在BO延長(zhǎng)線上取OA=CF,過(guò)M作MP⊥DN于P,因?yàn)椤螻MB+∠CDF=45°,所以只要證明∠FMN+∠CDF=45°即可解決問(wèn)題.

解答 (1)解:如圖1中,作NE⊥OB于E,

∵∠DMN=90°,
∴∠DMO+∠NME=90°,∠NME+∠MNE=90°,
∴∠DMO=∠MNE,
在△DMO和△MNE中,
$\left\{\begin{array}{l}{∠DOM=∠NEM=90°}\\{∠DMO=∠MNE}\\{DM=MN}\end{array}\right.$,
∴△DMO△MNE,
∴ME=DO=2,NE=OM=a,
∴OE=OM+ME=2+a,
∴點(diǎn)N坐標(biāo)(2+a,a),
故答案為N(2+a,a).
(2)證明:如圖2中,在OD上取OH=OM,連接HM,

∵OD=OB,OH=OM,∴HD=MB,∠OHM=∠OMH,
∴∠DHM=180°-45°=135°,
∵NB平分∠CBE,∴∠NBE=45°,
∴∠NBM=180°-45°=135°,∴∠DHM=∠NBM,
∵∠DMN=90°,∴∠DMO+∠NMB=90°,
∵∠HDM+∠DMO=90°,
∴∠HDM=∠NMB,
在△DHM和△MBN中,
$\left\{\begin{array}{l}{∠HDM=∠NMB}\\{DH=MB}\\{∠DHM=∠NBM}\end{array}\right.$,
∴△DHM≌△MBN(ASA),
∴DM=MN.                                
(3)結(jié)論:MN平分∠FMB成立.
證明:如圖3中,在BO延長(zhǎng)線上取OA=CF,

在△AOD和△FCD中,
$\left\{\begin{array}{l}{DO=DC}\\{∠DOA=∠C=90°}\\{OA=CF}\end{array}\right.$
∴△DOA≌△DCF,
∴AD=DF,∠ADO=∠CDF,
∵∠MDN=45°,
∴∠CDF+∠ODM=45°,
∴∠ADO+∠ODM=45°,
∴∠ADM=∠FDM,
在△DMA和△DMF中,
$\left\{\begin{array}{l}{DM=DM}\\{∠MDA=∠MDF}\\{DA=DF}\end{array}\right.$,
∴△DMA≌△DMF,
∴∠DFM=∠DAM=∠DFC,
過(guò)M作MP⊥DN于P,則∠FMP=∠CDF,
由(2)可知∠NMF+∠FMP=∠PMN=45°,
∵∠NMB=∠MDO,∠MDO+∠CDF=45°,
∴∠NMB=∠NMF,即MN平分∠FMB.
(在旋轉(zhuǎn)過(guò)程中,F(xiàn)M=AM,顯然AM的長(zhǎng)度是變化的,故FM的長(zhǎng)度是變化的或取兩個(gè)特殊位置,比較AM的值即可發(fā)現(xiàn)結(jié)論).

點(diǎn)評(píng) 本題考查四邊形綜合題、全等三角形的判定和性質(zhì)、等腰直角三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加輔助線,構(gòu)造全等三角形,記住一些基本圖形,可以使得我們?cè)谟^察新問(wèn)題的時(shí)候很迅速地聯(lián)想,屬于中考?jí)狠S題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知:如圖所示,在平面直角坐標(biāo)系中,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)$y=\frac{k}{x}(k≠0)$的圖象交于一、三象限內(nèi)的A、B兩點(diǎn),與x交于點(diǎn)C,與y軸交于點(diǎn)D,OC=1,BC=5,$sin∠BCO=\frac{3}{5}$.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)連接BO,AO,求△AOB的面積.
(3)觀察圖象,直接寫(xiě)出不等式$ax+b<\frac{k}{x}$的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,已知一次函數(shù)y1=kx+b(k≠0)的圖象與反比例函數(shù)y2=-$\frac{8}{x}$的圖象交于A、B兩點(diǎn),與坐標(biāo)軸交于M、N兩點(diǎn).且點(diǎn)A的橫坐標(biāo)和點(diǎn)B的縱坐標(biāo)都是-2.
(1)求一次函數(shù)的解析式;
(2)求△AOB的面積;
(3)觀察圖象,直接寫(xiě)出y1>y2時(shí)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.為了節(jié)約水資源,某市準(zhǔn)備按照居民家庭年用水量實(shí)行階梯水價(jià).水價(jià)分檔遞增,計(jì)劃使第一檔、第二檔和第三檔的水價(jià)分別覆蓋全市居民家庭的80%,15%和5%,為合理確定各檔之間的界限,隨機(jī)抽查了該市5萬(wàn)戶(hù)居民家庭上一年的年用水量(單位:m3),繪制了統(tǒng)計(jì)圖.如圖所示,下面四個(gè)推斷合理的是( 。
①年用水量不超過(guò)180m3的該市居民家庭按第一檔水價(jià)交費(fèi);
②年用水量超過(guò)240m3的該市居民家庭按第三檔水價(jià)交費(fèi);
③該市居民家庭年用水量的中位數(shù)在150-180之間;
④該市居民家庭年用水量的平均數(shù)不超過(guò)180.
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.己知P是線段AB上一點(diǎn)(與端點(diǎn)A、B不重合),M是線段AP的中點(diǎn),N是線段BP中點(diǎn),AB=6厘米,那么MN的長(zhǎng)等于( 。
A.2厘米B.3厘米C.4厘米D.5厘米

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

3.分解因式3m4-48=3(m2+4)(m+2)(m-2).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖1,在平面直角坐標(biāo)系中,點(diǎn)B在x軸正半軸上,OB的長(zhǎng)度為2m,以O(shè)B為邊向上作等邊三角形AOB,拋物線l:y=ax2+bx+c經(jīng)過(guò)點(diǎn)O,A,B三點(diǎn)
(1)當(dāng)m=2時(shí),a=-$\frac{\sqrt{3}}{2}$,當(dāng)m=3時(shí),a=-$\frac{\sqrt{3}}{3}$;
(2)根據(jù)(1)中的結(jié)果,猜想a與m的關(guān)系,并證明你的結(jié)論;
(3)如圖2,在圖1的基礎(chǔ)上,作x軸的平行線交拋物線l于P、Q兩點(diǎn),PQ的長(zhǎng)度為2n,當(dāng)△APQ為等腰直角三角形時(shí),a和n的關(guān)系式為a=-$\frac{1}{n}$;
(4)利用(2)(3)中的結(jié)論,求△AOB與△APQ的面積比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若點(diǎn)P(m,n)在直角坐標(biāo)系的第二象限,則一次函數(shù)y=mx+n的大致圖象是(  )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

6.如圖,根據(jù)圖中的信息,若設(shè)長(zhǎng)頸鹿的身高為xm,梅花鹿的身高為ym,則可列方程組$\left\{\begin{array}{l}{x-y=4}\\{x=3y+1}\end{array}\right.$.

查看答案和解析>>

同步練習(xí)冊(cè)答案