| A. | $\frac{4}{3}$ | B. | $\frac{5}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{5}{4}$ |
分析 由由折疊的性質(zhì)可得:PB′=PB,∠PB′C=∠B,又由在平行四邊形ABCD中,PB′⊥AD,求得△B′CD是直角三角形,繼而求得DB′的長,然后設BP=x,在Rt△AB′P中,利用勾股定理即可求得答案.
解答 解:由折疊的性質(zhì)可得:PB′=PB,∠PB′C=∠B,
∵四邊形ABCD是平行四邊形,PB′⊥AD,
∴∠B=∠D,∠PB′A=90°,
∴∠D+∠CB′D=90°,
∴∠DCB′=90°,
∵CD=3,BC=4,
∴AD=B′C=BC=4,
∴DB′=$\sqrt{C{D}^{2}+CB{′}^{2}}$=5,
∴AB′=DB′-AD=1,
設BP=x,則PB′=x,PA=3-x,
在Rt△AB′P中,PA2=AB′2+PB′2,
∴x2+12=(3-x)2,
解得:x=$\frac{4}{3}$,
∴BP=$\frac{4}{3}$.
故選A.
點評 此題考查了折疊的性質(zhì)、平行四邊形的性質(zhì)以及勾股定理.注意掌握折疊前后圖形的對應關(guān)系是關(guān)鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com