分析 連接BE,由相似三角形的性質(zhì)和等腰三角形的性質(zhì)得出∠DAC=∠EAB,AD=AE,由SAS證明△ACD≌△ABE,得出DC=EB,∠1=∠4,由等腰三角形和平行線的性質(zhì)得出∠1=∠2,∠2=∠3,得出∠3=∠4,證出EB=EF,因此EF∥DC,EF=DC,即可得出結(jié)論.
解答 證明:連接BE,如圖所示:![]()
∵AB=AC,△ABC∽△AED,
∴∠BAC=∠EAD,$\frac{AC}{AD}=\frac{AB}{AE}$,
∴∠DAC=∠EAB,AD=AE,
在△ACD和△ABE中,$\left\{\begin{array}{l}{AC=AB}&{\;}\\{∠DAC=∠EAB}&{\;}\\{AD=AE}&{\;}\end{array}\right.$,
∴△ACD≌△ABE(SAS),
∴DC=EB,∠1=∠4,
∵AB=AC,EF∥BC,
∴∠1=∠2,∠2=∠3,
∴∠3=∠4,
∴EB=EF,
∴EF∥DC,EF=DC,
∴四邊形CDEF是平行四邊形.
點(diǎn)評(píng) 本題考查了平行四邊形的判定、相似三角形的性質(zhì)、全等三角形的判定與性質(zhì)、等腰三角形的性質(zhì)等知識(shí);本題有一定難度,證明三角形全等是解決問(wèn)題的突破口.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com