分析 (1)根據(jù)AC=5,EC=3,求得AE=2,根據(jù)已知條件求得$\frac{AE}{AC}=\frac{DE}{BC}$=$\frac{2}{5}$,由于BC=6,于是得到DE=$\frac{12}{5}$,由于$\frac{DE}{BC}=\frac{EO}{BO}$=$\frac{2}{5}$,即可得到結(jié)果;
(2)由于$\frac{BE}{BO}$=$\frac{7}{5}$,于是得到$\frac{{S}_{△BCE}}{{S}_{△BOC}}$=$\frac{7}{5}$,根據(jù)△BOC的面積為15,求得S△BCE=21,由于$\frac{AE}{CE}=\frac{2}{3}$,于是得到$\frac{{S}_{△ABE}}{{S}_{△BCE}}$=$\frac{2}{3}$,求出S△ABE=14,即可得到結(jié)論.
解答 解:(1)∵AC=5,EC=3,
∴AE=2,
∵$\frac{AE}{AC}=\frac{DE}{BC}$=$\frac{2}{5}$,
∵BC=6,
∴DE=$\frac{12}{5}$,
∵$\frac{DE}{BC}=\frac{EO}{BO}$=$\frac{2}{5}$,
∵BE=7,
∴EO=2;
(2)∵$\frac{BE}{BO}$=$\frac{7}{5}$,
∴$\frac{{S}_{△BCE}}{{S}_{△BOC}}$=$\frac{7}{5}$,
∵△BOC的面積為15,
∴S△BCE=21,
∵$\frac{AE}{CE}=\frac{2}{3}$,
∴$\frac{{S}_{△ABE}}{{S}_{△BCE}}$=$\frac{2}{3}$,
∴S△ABE=14,
∴△ABC的面積=S△BCE+S△ABE=35.
點(diǎn)評(píng) 本題考查了三角形的面積的求法,熟練掌握等高不等底的三角形的面積的比等于底的比是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2場(chǎng) | B. | 4場(chǎng) | C. | 7場(chǎng) | D. | 9場(chǎng) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com