分析 (1)由圓內(nèi)接四邊形的性質(zhì)和鄰補(bǔ)角關(guān)系證出∠FBC=∠CAD,再由角平分線和對(duì)頂角相等得出∠FAB=∠CAD,由圓周角定理得出∠FAB=∠FCB,即可得出結(jié)論;
(2)由(1)得:∠FBC=∠FCB,由圓周角定理得出∠FAB=∠FBC,由公共角∠BFA=∠BFD,證出△AFB∽△BFD,得出對(duì)應(yīng)邊成比例求出BF,得出FD、AD的長(zhǎng),由圓周角定理得出∠BFA=∠BCA=90°,由三角函數(shù)求出∠FBA=30°,再由三角函數(shù)求出CD的長(zhǎng)即可.
解答 (1)證明:∵四邊形AFBC內(nèi)接于圓,
∴∠FBC+∠FAC=180°,
∵∠CAD+∠FAC=180°,
∴∠FBC=∠CAD,
∵AD是△ABC的外角∠EAC的平分線,
∴∠EAD=∠CAD,
∵∠EAD=∠FAB,
∴∠FAB=∠CAD,
又∵∠FAB=∠FCB,
∴∠FBC=∠FCB;
(2)解:由(1)得:∠FBC=∠FCB,
又∵∠FCB=∠FAB,
∴∠FAB=∠FBC,
∵∠BFA=∠BFD,
∴△AFB∽△BFD,
∴$\frac{BF}{FD}=\frac{FA}{BF}$,
∴BF2=FA•FD=12,
∴BF=2$\sqrt{3}$,
∵FA=2,
∴FD=6,AD=4,
∵AB為圓的直徑,
∴∠BFA=∠BCA=90°,
∴tan∠FBA=$\frac{AF}{BF}$=$\frac{2}{2\sqrt{3}}$=$\frac{\sqrt{3}}{3}$,
∴∠FBA=30°,
又∵∠FDB=∠FBA=30°,
∴CD=AD•cos30°=4×$\frac{\sqrt{3}}{2}$=2$\sqrt{3}$.
點(diǎn)評(píng) 本題考查了相似三角形的判定與性質(zhì)、圓周角定理、圓內(nèi)接四邊形的性質(zhì)、三角函數(shù)等知識(shí);本題綜合性強(qiáng),有一定難度,證明三角形相似是解決問(wèn)題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 22.5° | B. | 36° | C. | 45° | D. | 90° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | x+1=(30-x)-2 | B. | x+1=(15-x)-2 | C. | x-1=(30-x)+2 | D. | x-1=(15-x)+2 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com