分析 根據(jù)軸對稱圖形的性質(zhì),結(jié)合菱形的判定方法以及全等三角形的判定方法分析得出答案.
解答
解:因?yàn)閘是四邊形ABCD的對稱軸,AB∥CD,
則AD=AB,∠1=∠2,∠1=∠4,
則∠2=∠4,
∴AD=DC,
同理可得:AB=AD=BC=DC,
所以四邊形ABCD是菱形.
根據(jù)菱形的性質(zhì),可以得出以下結(jié)論:
所以①AC⊥BD,正確;
②AD∥BC,正確;
③四邊形ABCD是菱形,正確;
④在△ABD和△CDB中
∵$\left\{\begin{array}{l}{AB=BC}\\{AD=DC}\\{BD=BD}\end{array}\right.$
∴△ABD≌△CDB(SSS),正確.
故答案為:①②③④.
點(diǎn)評 此題考查了軸對稱以及菱形的判斷與菱形的性質(zhì),注意:對稱軸垂直平分對應(yīng)點(diǎn)的連線,對應(yīng)角相等,對應(yīng)邊相等.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{AD}{AB}$=$\frac{AE}{AC}$ | B. | $\frac{DF}{FC}=\frac{AE}{EC}$ | C. | $\frac{AD}{DB}=\frac{DE}{BC}$ | D. | $\frac{DF}{BF}=\frac{EF}{FC}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | (1,2) | B. | (2,-1) | C. | (-2,1) | D. | (-2,-1) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2a+3b=0 | B. | 2a-3b=0 | C. | 3a-2b=0 | D. | 3a+2b=0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{{2}^{2n}-2}{{2}^{2n}}$ | B. | $\frac{{2}^{n}-1}{{2}^{2n-1}}$ | C. | $\frac{{3}^{n}-1}{{2}^{2n}}$ | D. | $\frac{{2}^{n-1}-1}{{2}^{2n}}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com