分析 根據(jù)∠ACB=90°,CD⊥AB,得到∠CAD=∠BCD,推出Rt△ACD∽Rt△CBD,于是得到CD2=AD•BD,根據(jù)AF⊥BG,GD⊥AB,證得∠EDA=∠EFG=∠GDP=90°,推出△BGD∽△ADE,于是得到AD•BD=DG•DE即可得到結(jié)論.
解答
證明:∵∠ACB=90°,CD⊥AB,
∴∠ACD+∠BCD=90°,∠ACD+∠CAD=90°,
∴∠CAD=∠BCD,
∴Rt△ACD∽Rt△CBD,
∴$\frac{CD}{BD}$=$\frac{AD}{CD}$,
∴CD2=AD•BD,
又∵AF⊥BG,GD⊥AB,
∴∠EDA=∠EFG=∠GDB=90°,
∵∠1=∠2,
∴∠G=∠3,
∴△BGD∽△ADE,
∴$\frac{GD}{AD}$=$\frac{BD}{DE}$,
∴AD•BD=DG•DE
∴CD2=DE•DG.
點評 此題主要考查的是相似三角形的判定和性質(zhì),垂直的定義,熟練掌握相似三角形的判定和性質(zhì)是解題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com