分析 根據(jù)題意可以求得點(diǎn)B和點(diǎn)C的坐標(biāo),從而可以得到點(diǎn)B到y(tǒng)軸的距離等于線段BC的長(zhǎng),從而可以求得正方形的邊長(zhǎng),進(jìn)而求得正方形的面積.
解答 解:設(shè)點(diǎn)A的坐標(biāo)為(a,0),
由題意可得,點(diǎn)B的坐標(biāo)為(a,$\frac{1}{4}$a2),點(diǎn)C的坐標(biāo)為(a,a2),
∴a=a2-$\frac{1}{4}{a}^{2}$,
解得,a1=0(舍去),a2=$\frac{4}{3}$,
∴正方形BCDE的面積是:$\frac{4}{3}×\frac{4}{3}=\frac{16}{9}$,
故答案為:$\frac{16}{9}$.
點(diǎn)評(píng) 本題考查二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、正方形的性質(zhì),解題的關(guān)鍵是明確題意,求出正方形的邊長(zhǎng).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 75•sin55° | B. | 75•cos55° | C. | 75•tan55° | D. | $\frac{75}{tan55°}$ |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com