分析 (1)已知C在圓上,故只需證明OC與PC垂直即可;根據(jù)圓周角定理,易得∠PCB+∠OCB=90°,即OC⊥CP;故PC是⊙O的切線;
(2)AB是直徑;故只需證明BC與半徑相等即可;
(3)連接MA,MB,由圓周角定理可得∠ACM=∠BCM,進(jìn)而可得△MBN∽△MCB,故BM2=MN•MC;代入數(shù)據(jù)可得MN•MC=BM2=8.
解答 (1)證明:∵OA=OC,
∴∠A=∠ACO.
又∵∠COB=2∠A,∠COB=2∠PCB,
∴∠A=∠ACO=∠PCB.
又∵AB是⊙O的直徑,
∴∠ACO+∠OCB=90°.
∴∠PCB+∠OCB=90°.
即OC⊥CP,
∵OC是⊙O的半徑.
∴PC是⊙O的切線.
(2)證明:∵AC=PC,
∴∠A=∠P,
∴∠A=∠ACO=∠PCB=∠P.
又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB,
∴∠COB=∠CBO,
∴BC=OC.
∴BC=$\frac{1}{2}$AB.
(3)解:連接MA,MB,![]()
∵點M是 $\widehat{AB}$的中點,
∴$\widehat{AM}$=$\widehat{BM}$,
∴∠ACM=∠BCM.
∵∠ACM=∠ABM,
∴∠BCM=∠ABM.
∵∠BMN=∠BMC,
∴△MBN∽△MCB.
∴$\frac{BM}{MC}$=$\frac{MN}{BM}$.
∴BM2=MN•MC.
又∵AB是⊙O的直徑,$\widehat{AM}$=$\widehat{BM}$,
∴∠AMB=90°,AM=BM.
∵AB=8,
∴BM=4 $\sqrt{2}$.
∴MN•MC=BM2=32.
點評 此題主要考查圓的切線的判定及圓周角定理的運用和相似三角形的判定和性質(zhì)的應(yīng)用,等腰直角三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造相似三角形解決問題.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
| 羽毛球數(shù)n | 100 | 200 | 300 | 400 | 500 | 600 | 1000 | 2000 |
| 優(yōu)等品數(shù)m | 85 | 184 | 261 | 366 | 450 | 552 | 893 | 1804 |
| 優(yōu)等品率$\frac{m}{n}$ | 0.85 | 0.92 | 0.87 | 0.915 | a | 0.92 | 0.893 | 0.902 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com