分析 (1)①證明△BAD≌△CAF,可得:BD=CF,∠B=∠ACF=45°,則∠BCF=∠ACB+∠ACF=90°,所以BD與CF相等且垂直;
②①的結(jié)論仍成立,同理證明△DAB≌△FAC,可得結(jié)論:垂直且相等;
(2)當(dāng)∠ACB滿足45°時,CF⊥BC;如圖4,作輔助線,證明△QAD≌△CAF,即可得出結(jié)論.
解答 解:(1)①CF與BD位置關(guān)系是垂直,數(shù)量關(guān)系是相等,理由是:
如圖2,∵四邊形ADEF是正方形,
∴AD=AF,∠DAF=90°,
∴∠DAC+∠CAF=90°,
∵AB=AC,∠BAC=90°,
∴∠BAD+∠DAC=90°,且∠B=∠ACB=45°,
∴∠CAF=∠BAD,
∴△BAD≌△CAF,
∴BD=CF,∠B=∠ACF=45°,
∴∠ACB+∠ACF=45°+45°=90°,
即∠BCF=90°,
∴BC⊥CF,
即BD⊥CF;
故答案為:垂直,相等;
②當(dāng)點D在BC的延長線上時,①的結(jié)論仍成立,理由是:
如圖3,由正方形ADEF得AD=AF,∠DAF=90°,
∵∠BAC=90°,
∴∠DAF=∠BAC,
∴∠DAB=∠FAC,
又∵AB=AC,
∴△DAB≌△FAC,
∴CF=BD,
∠ACF=∠ABD,
∵∠BAC=90°,AB=AC,
∴∠ABC=45°,
∴∠ACF=∠ABC=45°
∴∠BCF=∠ACB+∠ACF=90°,
即CF⊥BD;![]()
(2)當(dāng)∠BCA=45°時,CF⊥BD,理由是:
如圖4,過點A作AQ⊥AC,交BC于點Q,
∵∠BCA=45°,
∴∠AQC=45°,
∴∠AQC=∠BCA,
∴AC=AQ,
∵AD=AF,∠QAC=∠DAF=90°,
∴∠QAC-∠DAC=∠DAF-∠DAC,
∴∠QAD=∠CAF,
∴△QAD≌△CAF,
∴∠ACF=∠AQD=45°,
∠BCF=∠ACB+∠ACF=90°,
即CF⊥BD.
點評 本題是四邊形的綜合題,考查了正方形、等腰直角三角形、全等三角形的性質(zhì)和判定,本題的三個結(jié)論都是證明三角形全等得出,所以利用SAS證明三角形全等是本題的關(guān)鍵;第(2)問,恰當(dāng)?shù)刈鬏o助線,構(gòu)建等腰直角三角形,同樣也是構(gòu)建兩個三角形全等得出結(jié)論.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 0.1,0.2,0.3,0.4 | B. | 0.2,0.8,12,30 | C. | 1,3,4,6 | D. | 12,16,45,60 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 0 | B. | 1 | C. | 2 | D. | 5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com