分析 首先過點A作AE⊥CD于點E,過點B作BF⊥CD于點F,易得四邊形ABFE為矩形,根據(jù)矩形的性質(zhì),可得AB=EF,AE=BF.由題意可知:AE=BF=100米,CD=3500米,然后分別在Rt△AEC與Rt△BFD中,利用三角函數(shù)即可求得CE與DF的長,繼而求得島嶼兩端A、B的距離.
解答 解:過點A作AE⊥CD于點E,過點B作BF⊥CD于點F,![]()
∵AB∥CD,
∴∠AEF=∠EFB=∠ABF=90°,
∴四邊形ABFE為矩形.
∴AB=EF,AE=BF.
由題意可知:AE=BF=300米,CD=3500米.
在Rt△AEC中,∠C=60°,AE=300米.
∴CE=$\frac{AE}{tan60°}$=$\frac{300}{\sqrt{3}}$=100$\sqrt{3}$(米),
在Rt△BFD中,∠BDF=45°,BF=300.
∴DF=BF=300(米).
∴AB=EF=CD+DF-CE=3500+300-100$\sqrt{3}$≈3800-100×1.73≈3627(米),
答:島嶼兩端A、B的距離為3627米.
點評 此題考查了俯角的定義、解直角三角形與矩形的性質(zhì).注意能借助俯角構(gòu)造直角三角形并解直角三角形是解此題的關鍵,注意數(shù)形結(jié)合思想的應用.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com