欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

15.如圖,在菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分別為點E、F,連接EF.
(1)求證:△ABE≌△ADF;
(2)求△AEF的面積.

分析 (1)由菱形的性質(zhì)得出AB=AD=BC=CD,∠B=∠D,由AAS證明△ABE≌△ADF即可;
(2)由全等三角形的性質(zhì)得出AE=AF,證明△AEF是等邊三角形,再由三角函數(shù)求出出AE、EF,過A作AM⊥EF于M,利用三角函數(shù)求出AM,即可求出△AEF的面積.

解答 (1)證明:∵四邊形ABCD是菱形,
∴AB∥CD,AB=AD=BC=CD,∠B=∠D=60°,
∵AE⊥BC,AF⊥CD,
∴∠AEB=∠AFD=90°,
在△ABE和△ADF中,$\left\{\begin{array}{l}{∠B=∠D}&{\;}\\{∠AEB=∠AFD}&{\;}\\{AB=AD}&{\;}\\{\;}&{\;}\end{array}\right.$,
∴△ABE≌△ADF(AAS);
(2)解:∵△ABE≌△ADF,
∴AE=AF,
∵∠B=60°,
∴∠BAD=120°,∠BAE=30°,
∴∠EAF=120°-30°-30°=60°,
∴△AEF是等邊三角形,
∴∠AEF=60°,
∵AB=4,
∴BE=$\frac{1}{2}$AB=2,
∴AE=2$\sqrt{3}$,
∴EF=AE=2$\sqrt{3}$,
過A作AM⊥EF于M,如圖所示:
則AM=AE•sin60°=2$\sqrt{3}$×$\frac{\sqrt{3}}{2}$=3,
∴△AEF的面積=$\frac{1}{2}$EF•AM=$\frac{1}{2}$×2$\sqrt{3}$×3=3$\sqrt{3}$.

點評 此題考查了菱形的性質(zhì)、全等三角形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)、三角函數(shù);熟練掌握菱形的性質(zhì),并能進行推理論證與計算是解決問題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

6.若|5-10x|=10x-5,則x的取值范圍是x≥$\frac{1}{2}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

7.線段AB=3,且AB∥x軸,若A(-2,4),則將線段向下平移4個單位長度后,點B的對應(yīng)點的坐標為( 。
A.(1,0)B.(0,1)C.(-5,1)D.(1,0)或(-5,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

4.下列是二元一次方程的是( 。
A.3x=10B.2x2=yC.y+$\frac{1}{x}$=2D.x+8y=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

10.以下列各組線段為邊,能組成三角形的是( 。
A.2cm,3cm,5cmB.5cm,6cm,10cmC.1cm,1cm,3cmD.3cm,4cm,9cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2016-2017學(xué)年浙江省衢州市八年級下學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

閱讀與計算:請閱讀以下材料,并完成相應(yīng)的任務(wù).

斐波那契(約1170﹣1250)是意大利數(shù)學(xué)家,他研究了一列數(shù),這列數(shù)非常奇妙,被稱為斐波那契數(shù)列(按照一定順序排列著的一列數(shù)稱為數(shù)列).后來人們在研究它的過程中,發(fā)現(xiàn)了許多意想不到的結(jié)果,在實際生活中,很多花朵(如梅花、飛燕草、萬壽菊等)的瓣數(shù)恰是斐波那契數(shù)列中的數(shù).斐波那契數(shù)列還有很多有趣的性質(zhì),在實際生活中也有廣泛的應(yīng)用.斐波那契數(shù)列中的第n個數(shù)可以用表示(其中,n≥1).這是用無理數(shù)表示有理數(shù)的一個范例.

任務(wù):請根據(jù)以上材料,通過計算求出斐波那契數(shù)列中的第1個數(shù)和第2個數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.有一棵樹較高(如圖),無法直接量出它的高度,可以先用測角器在離樹底部不遠處的地面上找一點B,使此時測得樹頂A的仰角為60°,再用皮尺測得BC之間的距離為a,由此你能得出這棵樹的高度嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.已知關(guān)于x的方程4x2-8mx+n2=0,其中m,n分別是一個等腰三角形的腰長和底邊長.
(1)請判定這個方程根的情況,并說明理由;
(2)若方程兩實根之差的絕對值為8,等腰三角形的面積是12,求這個三角形的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.計算:
(1)(-6)+8+(-4)+7;
(2)(-$\frac{1}{3}$)+$\frac{5}{6}$+$\frac{1}{3}$+(-$\frac{5}{6}$).

查看答案和解析>>

同步練習(xí)冊答案