分析 連接BH,由正方形的性質(zhì)得出∠BAH=∠ABC=∠BEH=∠F=90°,由旋轉(zhuǎn)的性質(zhì)得:AB=EB,∠CBE=30°,得出∠ABE=60°,由HL證明Rt△ABH≌Rt△EBH,得出∠ABH=∠EBH=$\frac{1}{2}$∠ABE=30°,AH=EH,由三角函數(shù)求出AH,即可得出HD的長.
解答 解:連接BH,如圖所示:
∵四邊形ABCD和四邊形BEFG是正方形,
∴∠BAH=∠ABC=∠BEH=∠F=90°,
由旋轉(zhuǎn)的性質(zhì)得:AB=EB,∠CBE=30°,
∴∠ABE=60°,
在Rt△ABH和Rt△EBH中,$\left\{\begin{array}{l}{BH=BH}\\{AB=EB}\end{array}\right.$,
∴Rt△ABH≌△Rt△EBH(HL),
∴∠ABH=∠EBH=$\frac{1}{2}$∠ABE=30°,AH=EH,
∴AH=AB•tan∠ABH=$\sqrt{3}$×$\frac{\sqrt{3}}{3}$=1,
∴HD=AD-AH=$\sqrt{3}$-1,
故答案為:$\sqrt{3}$-1.
點(diǎn)評 本題考查了旋轉(zhuǎn)的性質(zhì)、正方形的性質(zhì)、全等三角形的判定與性質(zhì)、三角函數(shù);熟練掌握旋轉(zhuǎn)的性質(zhì)和正方形的性質(zhì),證明三角形全等是解決問題的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1 | B. | $\frac{2\sqrt{5}}{5}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com