分析 (1)在EB上截取EF=AE,利用AAS即可證得△ABF≌△CAE,根據(jù)全等三角形的對應邊相等即可證得BE=2AE=4,由三角形的面積公式可求得結論;
(2)在AD上截取AF=BE,連接CF,易證△ACF≌△BAE,可得CF=AE,BE=AF,∠AEB=∠CFA,再根據(jù)∠BDE=2∠DEC,即可求得EF=FC,即可解題.
解答 解:(1)∵∠BAC=90°,∠BED=∠BAC,
∴∠BED=90°,
在EB上截取EF=AE,設∠BED=2α,
∴∠FAE=∠AFE=α,
∴∠AEC=∠AFB,
∵∠CAD+∠BAD=∠BAC=2α,∠ABE+∠BAD=∠BED=2α,
∴∠CAE=∠ABE
在△ABF和△CAE中,
$\left\{\begin{array}{l}{∠AEC=∠AFB}\\{∠CAE=∠ABE}\\{AB=AC}\end{array}\right.$,
∴△ABF≌△CAE(AAS),
∴BF=AE=EF,
∴BE=2AE=4,
∴△AEB的面積=$\frac{1}{2}$AE•BE=$\frac{1}{2}$×2×4=4;
(2)在AD上截取AF=BE,連接CF,
在△ACF和△BAE中,
$\left\{\begin{array}{l}{CA=AB}\\{∠DAC=∠ABE}\\{AF=BE}\end{array}\right.$,
∴△ACF≌△BAE,(SAS)
∴CF=AE,BE=AF,∠AEB=∠CFA,
∴∠BED=∠CFD
∵∠BED=2∠DEC,∠CFD=∠DEC+∠ECF,
∴∠DEC=∠ECF,
∴EF=FC,
∴AE=EF,
∴BE=AF=2AE.
點評 本題考查了全等三角形的判定考查了全等三角形對應邊、對應角相等的性質,本題中求證△ACF≌△BAE是解題的關鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com