分析 ①利用因式分解法解方程;
②利用因式分解法解方程;
③先移項(xiàng)得到3(x-5)2+2(x-5)=0,然后利用因式分解法解方程;
④先把方程整理為一般式,然后利用求根公式法解方程.
解答 解:①(x+4)(x-1)=0,
x+4=0或x-1=0,
所以x1=-4,x2=1;
②(2x-3)(3x+4)=0,
2x-3=0或3x+4=0,
所以x1=$\frac{3}{2}$,x2=-$\frac{4}{3}$;
③3(x-5)2+2(x-5)=0,
(x-5)(3x-15+2)=0,
x-5=0或3x-15+2=0,
所以x1=5,x2=$\frac{13}{3}$;
④3x2+10x+5=0,
△=102-4×3×5=40,
x=$\frac{-10±\sqrt{40}}{2×3}$=$\frac{-5±\sqrt{10}}{3}$
所以x1=$\frac{-5+\sqrt{10}}{3}$,x2=$\frac{-5-\sqrt{10}}{3}$.
點(diǎn)評 本題考查了解一元二次方程-因式分解法:先把方程的右邊化為0,再把左邊通過因式分解化為兩個(gè)一次因式的積的形式,那么這兩個(gè)因式的值就都有可能為0,這就能得到兩個(gè)一元一次方程的解,這樣也就把原方程進(jìn)行了降次,把解一元二次方程轉(zhuǎn)化為解一元一次方程的問題了(數(shù)學(xué)轉(zhuǎn)化思想).也考查了公式法解一元二次方程.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com