分析 分兩種情形討論即可①∠MN′O′=90°,根據(jù)$\frac{ED}{MN′}$=$\frac{DO′}{O′N′}$計(jì)算即可
②∠MON=90°,利用△DOE∽△EFM,得$\frac{DO}{EF}$=$\frac{ED}{EM}$計(jì)算即可.
解答 解:
如圖作EF⊥BC于F,DN′⊥BC于N′交EM于點(diǎn)O′,此時(shí)∠MN′O′=90°,
∵DE是△ABC中位線,
∴DE∥BC,DE=$\frac{1}{2}$BC=10,
∵DN′∥EF,
∴四邊形DEFN′是平行四邊形,∵∠EFN′=90°,
∴四邊形DEFN′是矩形,
∴EF=DN′,DE=FN′=10,
∵AB=AC,∠A=90°,
∴∠B=∠C=45°,
∴BN′=DN′=EF=FC=5,
∴$\frac{ED}{MN′}$=$\frac{DO′}{O′N′}$,
∴$\frac{10}{2}$=$\frac{DO′}{5-DO′}$,
∴DO′=$\frac{25}{6}$.
當(dāng)∠MON=90°時(shí),
∵△DOE∽△EFM,
∴$\frac{DO}{EF}$=$\frac{ED}{EM}$,
∵EM=$\sqrt{E{F}^{2}+M{F}^{2}}$=13,
∴DO=$\frac{50}{13}$,
故答案為$\frac{25}{6}$或$\frac{50}{13}$.
點(diǎn)評(píng) 本題考查三角形中位線定理、矩形的判定和性質(zhì)、相似三角形的判定和性質(zhì)、勾股定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)分類討論,學(xué)會(huì)添加常用輔助線,屬于中考常考題型.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\sqrt{2}$+$\sqrt{2}$=2 | B. | $\sqrt{3}$-$\sqrt{3}$=0 | C. | $\sqrt{2}$×$\sqrt{2}$=4 | D. | $\sqrt{(-3)^{2}}$=-3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 16時(shí)20分 | B. | 17時(shí)20分 | C. | 17時(shí)40分 | D. | 16時(shí)40分 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com