分析 根據(jù)垂徑定理得出$\widehat{AC=\widehat{BC}}$,再利用圓周角定理得出∠BOC=60°,再根據(jù)等邊三角形的判定得出BC=BO=CO,進(jìn)而得出AO=BO=AC=BC,即可證明結(jié)論.
解答 解:∵點(diǎn)A、B、C、D都在⊙O上,OC⊥AB,
∴$\widehat{AC}$=$\widehat{BC}$,
∵∠ADC=30°,
∴∠AOC=∠BOC=2∠ADC=60°,
∴∠BOC的度數(shù)為60°,
∵$\widehat{AC=\widehat{BC}}$,
∴AC=BC,
∵AO=BO,
∵∠BOC的度數(shù)為60°,BO=CO
∴△BOC為等邊三角形,
∴BC=BO=CO,
∴AO=BO=AC=BC,
∴四邊形AOBC是菱形.
點(diǎn)評(píng) 此題主要考查了菱形的判定以及垂徑定理和圓周角定理等知識(shí),根據(jù)垂徑定理得出$\widehat{AC=\widehat{BC}}$是解決問題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | -1 | B. | 1 | C. | -3 | D. | 3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 28 | B. | 32 | C. | 36 | D. | 44 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com