分析 (1)連接OC,則得出∠COD=2∠CAO=2∠D=60°,可求得∠OCD=90°,可得出結(jié)論;
(2)可利用△OCD的面積-扇形BOC的面積求得陰影部分的面積.
解答 (1)證明:連接OC,則∠COD=2∠CAD,
∵AC=CD,![]()
∴∠CAD=∠D=30°,
∴∠COD=60°,
∴∠OCD=180°-60°-30°=90°,
∴OC⊥CD,
即CD是⊙O的切線;
(2)解:在Rt△OCD中,OC=4,OD=8,由勾股定理可求得CD=4$\sqrt{3}$,
所以S△OCD=$\frac{1}{2}$OC•CD=$\frac{1}{2}$×4×4$\sqrt{3}$=8$\sqrt{3}$,
因?yàn)椤螩OD=60°,
所以S扇形COB=$\frac{60π{×4}^{2}}{360}$=$\frac{8}{3}π$,
所以S陰影=S△OCD-S扇形COB=8$\sqrt{3}$-$\frac{8}{3}π$.
點(diǎn)評(píng) 本題主要考查切線的判定及扇形面積的計(jì)算,證明切線時(shí),連接過切點(diǎn)的半徑是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 0 | B. | a+b | C. | a-b | D. | b-a |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com