| A. | $\frac{60}{13}$ | B. | 3 | C. | $\frac{5}{2}$ | D. | $\frac{13}{5}$ |
分析 作AE⊥BD于E,由矩形的性質(zhì)和勾股定理求出BD,由△ABD的面積的計(jì)算方法求出AE的長(zhǎng)即可.
解答 解:作AE⊥BD于E,如圖所示:![]()
∵四邊形ABCD是矩形,
∴∠BAD=90°,
∴BD=$\sqrt{A{B}^{2}+A{D}^{2}}$=$\sqrt{{5}^{2}+1{2}^{2}}$=13,
∵△ABD的面積=$\frac{1}{2}$BD•AE=$\frac{1}{2}$AB•AD,
∴AE=$\frac{AB•AD}{BD}$=$\frac{5×12}{13}$=$\frac{60}{13}$;
即點(diǎn)A到對(duì)角線BD的距離為$\frac{60}{13}$.
故選:A.
點(diǎn)評(píng) 本題考查了矩形的性質(zhì)、勾股定理、三角形面積的計(jì)算;熟練掌握矩形的性質(zhì),并能進(jìn)行推理計(jì)算是解決問(wèn)題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 6+4$\sqrt{2}$ | B. | 16 | C. | 12+8$\sqrt{2}$ | D. | 32 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 5m-2m=3 | B. | 2a•3a=6a | C. | (ab3)2=ab6 | D. | 2m3n÷(mn)=2m2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 24,27 | B. | 26,27 | C. | 26,24 | D. | 20,24 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | a | B. | b | C. | -b | D. | 1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com