分析 根據(jù)旋轉(zhuǎn)的性質(zhì),EC=BC=4,DC=AC=6,∠ACD=∠ACB=90°,由點F是DE的中點,可求出EG、GF,因為AE=AC-EC=2,可求出AG,然后運用勾股定理求出AF.
解答 解:作FG⊥AC,![]()
根據(jù)旋轉(zhuǎn)的性質(zhì),EC=BC=4,DC=AC=6,∠ACD=∠ACB=90°,
∵點F是DE的中點,
∴FG∥CD
∴GF=$\frac{1}{2}$CD=$\frac{1}{2}$AC=3
EG=$\frac{1}{2}$EC=$\frac{1}{2}$BC=2
∵AC=6,EC=BC=4
∴AE=2
∴AG=4
根據(jù)勾股定理,AF=5.
點評 本題主要考查了旋轉(zhuǎn)的性質(zhì)、三角形中位線性質(zhì)、勾股定理的綜合運用,作垂線構(gòu)造直角三角形是解決問題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 正方形 | B. | 菱形 | C. | 矩形 | D. | 無法確定 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{\sqrt{5}}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{2\sqrt{5}}{5}$ | D. | $\frac{\sqrt{5}}{5}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 3 | B. | $\frac{15}{4}$ | C. | 5 | D. | $\frac{15}{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com