分析 過點C作AB的垂線,垂足為M.根據(jù)等邊三角形以及等腰三角形三線合一的性質(zhì)得出∠B=60°,AM=MB=$\frac{1}{2}$AB=2,利用三角函數(shù)求出CM=2$\sqrt{3}$.在Rt△CDM中利用勾股定理求出DM=$\sqrt{C{D}^{2}-C{M}^{2}}$=1.再分兩種情況討論:①D在線段AM上;②D在線段BM上.過D作DN⊥BC于N,分別求出DN、CN的長,再根據(jù)正切函數(shù)的定義即可求出tan∠BCD的值.
解答
解:過點C作AB的垂線,垂足為M,
∵等邊△ABC的邊長為4,
∴∠B=60°,AM=MB=$\frac{1}{2}$AB=2,CM=4×sin60°=2$\sqrt{3}$.
∵在Rt△CDM中,∠CMD=90°,CD=$\sqrt{13}$,CM=2$\sqrt{3}$,
∴DM=$\sqrt{C{D}^{2}-C{M}^{2}}$=1.
分兩種情況討論:
①D在線段AM上時,如圖1,過D作DN⊥BC于N.此時BD=BM+DM=2+1=3,
在Rt△BDN中,∵BD=3,∠BND=90°,∠B=60°,
∴DN=BD•sin60°=$\frac{3\sqrt{3}}{2}$,BN=BD•cos60°=$\frac{3}{2}$,
∴CN=BC-BN=4-$\frac{3}{2}$=$\frac{5}{2}$,
∴tan∠BCD=$\frac{DN}{CN}$=$\frac{\frac{3\sqrt{3}}{2}}{\frac{5}{2}}$=$\frac{3\sqrt{3}}{5}$;
②D在線段BM上時,如圖2,過D作DN⊥BC于N.此時BD=BM-DM=2-1=1,
在Rt△BDN中,∵BD=1,∠BND=90°,∠B=60°,
∴DN=BD•sin60°=$\frac{\sqrt{3}}{2}$,BN=BD•cos60°=$\frac{1}{2}$,
∴CN=BC-BN=4-$\frac{1}{2}$=$\frac{7}{2}$,
∴tan∠BCD=$\frac{DN}{CN}$=$\frac{\frac{\sqrt{3}}{2}}{\frac{7}{2}}$=$\frac{\sqrt{3}}{7}$.
故答案為$\frac{3\sqrt{3}}{5}$或$\frac{\sqrt{3}}{7}$.
點評 本題考查了解直角三角形,等邊三角形的性質(zhì),勾股定理,銳角三角函數(shù)的定義,利用數(shù)形結(jié)合與分類討論是解題的關鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 4$\sqrt{3}$ | B. | $\frac{8}{3}$$\sqrt{3}$ | C. | 4$\sqrt{5}$ | D. | 6$\sqrt{3}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com