分析 (1)直接利用圓周角定理結(jié)合平行線的判定方法得出FO是△ABG的中位線,即可得出答案;
(2)首先得出△FOE≌△CBE(ASA),則BC=FO=$\frac{1}{2}$AB=2,進(jìn)而得出AC的長,再利用相似三角形的判定與性質(zhì)得出DC的長.
解答 (1)證明:∵以Rt△ABC的直角邊AB為直徑作⊙O,點(diǎn)F恰好落在$\widehat{AB}$的中點(diǎn),
∴$\widehat{AF}$=$\widehat{BF}$,
∴∠AOF=∠BOF,
∵∠ABC=∠ABG=90°,
∴∠AOF=∠ABG,
∴FO∥BG,
∵AO=BO,
∴FO是△ABG的中位線,
∴FO=$\frac{1}{2}$BG;
(2)解:在△FOE和△CBE中,
$\left\{\begin{array}{l}{∠FOE=∠CBE}\\{EO=BE}\\{∠OEF=∠CEB}\end{array}\right.$,
∴△FOE≌△CBE(ASA),
∴BC=FO=$\frac{1}{2}$AB=2,
∴AC=$\sqrt{A{B}^{2}+B{C}^{2}}$=2$\sqrt{5}$,
連接DB,
∵AB為⊙O直徑,
∴∠ADB=90°,
∴∠ADB=∠ABC,
∵∠BCD=∠ACB,
∴△BCD∽△ACB,
∴$\frac{BC}{AC}$=$\frac{CD}{BC}$,
∴$\frac{2}{2\sqrt{5}}$=$\frac{DC}{2}$,
解得:DC=$\frac{2\sqrt{5}}{5}$.
點(diǎn)評(píng) 此題主要考查了相似三角形的判定與性質(zhì)以及全等三角形的判定與性質(zhì)等知識(shí),正確得出△BCD∽△ACB是解題關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
| 甲 | 乙 | |
| 原料成本 | 12 | 8 |
| 銷售單價(jià) | 18 | 12 |
| 生產(chǎn)提成 | 1 | 0.8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com