分析 連接MN.由于四邊形ABCD是平行四邊形,那么AD平行且等于BC,而M、N是AD、BC的中點(diǎn),從而可證DM平行且等于BN,于是可證四邊形BNDM是平行四邊形,則BM∥DN,同理可證AN∥CM,那么可證四邊形PNQM是平行四邊形,由于AM平行等于BN,且AB=BN=$\frac{1}{2}$BC,則可知四邊形ABNM是菱形,利用菱形的性質(zhì),可知AN⊥BM,即∠MPN=90°,那么平行四邊形PNQM是矩形.
解答 證明:連接MN,如圖所示:![]()
∵ABCD為平行四邊形,
∴AD平行且等于BC,
又∵M(jìn)為AD的中點(diǎn),N為BC的中點(diǎn),
∴MD平行且等于BN,
∴BNDM為平行四邊形,
∴BM∥ND,
同理AN∥MC,
∴四邊形PMQN為平行四邊形,
連接MN,
∵AM平行且等于BN,
∴四邊形ABNM為平行四邊形,
又∵AD=2AB,M為AD中點(diǎn),
∴BN=AB,
∴四邊形ABNM為菱形,
∴AN⊥BM,
∴平行四邊形PMQN為矩形.
點(diǎn)評(píng) 本題考查了平行四邊形的判定和性質(zhì)、菱形的判定和性質(zhì)、矩形的判定;熟練掌握平行四邊形的判定與性質(zhì),證出AN⊥BM是解決問題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1 | B. | $\frac{3}{4}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 延長(zhǎng)AB到D,使BD=$\frac{1}{3}$AB | B. | 兩點(diǎn)之間線段最短 | ||
| C. | 兩條直線相交有且只有一個(gè)交點(diǎn) | D. | 等角的補(bǔ)角相等 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2個(gè) | B. | 3個(gè) | C. | 4個(gè) | D. | 5個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com