分析 (1)由兩對角相等(∠APQ=∠C,∠A=∠A),證明△AQP∽△ABC;
(2)當△PQB為等腰三角形時,有兩種情況,需要分類討論.
(I)當點P在線段AB上時,如題圖1所示.由三角形相似(△AQP∽△ABC)關(guān)系計算AP的長;
(II)當點P在線段AB的延長線上時,如題圖2所示.利用角之間的關(guān)系,證明點B為線段AP的中點,從而可以求出AP.
解答 (1)證明:∵PQ⊥AQ,
∴∠AQP=90°=∠ABC,
在△APQ與△ABC中,
∵∠AQP=90°=∠ABC,∠A=∠A,
∴△AQP∽△ABC.
(2)解:在Rt△ABC中,AB=6,BC=8,由勾股定理得:AC=10.
∵∠QBP為鈍角,
∴當△PQB為等腰三角形時,
(I)當點P在線段AB上時,如題圖1所示.
∵∠QPB為鈍角,
∴當△PQB為等腰三角形時,只可能是PB=PQ,
由(1)可知,△AQP∽△ABC,
∴$\frac{PA}{AC}$=$\frac{PQ}{BC}$,即$\frac{6-PB}{10}$=$\frac{PB}{8}$,解得:PB=$\frac{8}{3}$,
∴AP=AB-PB=6-$\frac{8}{3}$=$\frac{10}{3}$;
(II)當點P在線段AB的延長線上時,如題圖2所示.
∵∠QBP為鈍角,
∴當△PQB為等腰三角形時,只可能是PB=BQ.
∵BP=BQ,∴∠BQP=∠P,
∵∠BQP+∠AQB=90°,∠A+∠P=90°,
∴∠AQB=∠A,
∴BQ=AB,
∴AB=BP,點B為線段AP中點,
∴AP=2AB=2×6=12.
綜上所述,當△PQB為等腰三角形時,AP的長為$\frac{10}{3}$或12.
點評 本題考查相似三角形及分類討論的數(shù)學思想,難度不大.第(2)問中,當△PQB為等腰三角形時,有兩種情況,需要分類討論,避免漏解.
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com