分析 (1)根據(jù)平行四邊形的性質(zhì)和角平分線(xiàn)的性質(zhì)證明∠BAE=∠BEA,從而可得AB=BE,同理可得AB=AF,再由AF∥BE可得四邊形ABEF是菱形;
(2)過(guò)A作AH⊥BE,根據(jù)菱形的性質(zhì)可得AO=EO,BO=FO,BE=AB=5,AE⊥BF,利用勾股定理可得AO的長(zhǎng),進(jìn)而可得AE長(zhǎng),利用菱形的面積公式計(jì)算出AH的長(zhǎng),然后根據(jù)?ABCD的面積公式求出AD即可.
解答 (1)證明:∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∴∠DAE=∠AEB,
∵∠BAD的平分線(xiàn)交BC于點(diǎn)E,
∴∠DAE=∠BEA,
∴∠BAE=∠BEA,
∴AB=BE,
同理:AB=AF,
∴AF=BE,
∵AF∥BE,
∴四邊形ABEF是平行四邊形,
∵AB=AF
∴四邊形ABEF是菱形.![]()
(2)解:過(guò)A作AH⊥BE,
∵四邊形ABCD是菱形,
∴AO=EO,BO=FO,BE=AB=5,AE⊥BF,
∵BF=8,
∴BO=4,
∴AO=$\sqrt{{5}^{2}-{4}^{2}}$=3,
∴AE=6,
∴S菱形ABEF=$\frac{1}{2}$AE•BF=$\frac{1}{2}$×6×8=24,
∴BE•AH=24,
∴AH=$\frac{24}{5}$,
∴S平行四邊形ABCD=AD×AH=36,
∴AD=$\frac{15}{2}$.
點(diǎn)評(píng) 此題主要考查了菱形的性質(zhì)和判定,以及平行四邊形的性質(zhì),關(guān)鍵是掌握鄰邊相等的平行四邊形是菱形,菱形的面積為對(duì)角線(xiàn)之積的一半.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 兩直線(xiàn)平行,同位角相等 | B. | 兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ) | ||
| C. | 等腰三角形的底角相等 | D. | 對(duì)頂角相等 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 逐漸變大 | B. | 不變 | C. | 逐漸變小 | D. | 先變小后變大 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\sqrt{5}$-2 | B. | 5-$\sqrt{5}$ | C. | $\sqrt{5}$-1 | D. | 4-$\sqrt{5}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | B. | ||||
| C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\sqrt{4}$ | B. | $\sqrt{8}$ | C. | $\sqrt{\frac{1}{2}}$ | D. | $\sqrt{11}$ |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com