分析 (1)由平行四邊形ABOC繞點O順時針旋轉(zhuǎn)90°,得到平行四邊形A′B′OC′,且點A的坐標(biāo)是(0,4),可求得點A′的坐標(biāo),然后利用待定系數(shù)法即可求得經(jīng)過點C、A、A′的拋物線的解析式;
(2)首先連接AA′,設(shè)直線AA′的解析式為:y=kx+b,利用待定系數(shù)法即可求得直線AA′的解析式,再設(shè)點M的坐標(biāo)為:(x,-x2+3x+4),繼而可得△AMA′的面積,繼而求得答案;
(3)根據(jù)平行四邊形的性質(zhì)列方程即可得到結(jié)論.
解答 解:(1)∵平行四邊形ABOC繞點O順時針旋轉(zhuǎn)90°,得到平行四邊形A′B′OC′,且點A的坐標(biāo)是(0,4),
∴點A′的坐標(biāo)為:(4,0),
∵點A、C的坐標(biāo)分別是(0,4)、(-1,0),拋物線經(jīng)過點C、A、A′,
設(shè)拋物線的解析式為:y=ax2+bx+c,
∴$\left\{\begin{array}{l}{a-b+c=0}\\{c=4}\\{16+4b+c=0}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=-1}\\{b=3}\\{c=4}\end{array}\right.$,
∴此拋物線的解析式為:y=-x2+3x+4;
(2)如圖1,連接AA′,設(shè)直線AA′的解析式為:y=kx+b,
∴$\left\{\begin{array}{l}{b=4}\\{4k+b=0}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=-1}\\{b=4}\end{array}\right.$,
∴直線AA′的解析式為:y=-x+4,
設(shè)點M的坐標(biāo)為:(x,-x2+3x+4),
則S△AMA′=$\frac{1}{2}$×4×[-x2+3x+4-(-x+4)]=-2x2+8x=-2(x-2)2+8,
∴當(dāng)x=2時,△AMA′的面積最大,最大值S△AMA′=8,
∴M的坐標(biāo)為:(2,6);
(3)設(shè)點P的坐標(biāo)為(x,-x2+3x+4),當(dāng)P,N,B,Q構(gòu)成平行四邊形時,
∵平行四邊形ABOC中,點A、C的坐標(biāo)分別是(0,4)、(-1,0),![]()
∴點B的坐標(biāo)為(1,4),
∵點Q坐標(biāo)為(1,0),P為拋物線上一動點,N為x軸上的一動點,
當(dāng)BQ為邊時,PN∥BQ,PN=BQ,
∵BQ=4,
∴-x2+3x+4=±4,
當(dāng)-x2+3x+4=4時,解得:x1=0,x2=3,
∴P1(0,4),P2(3,4);
當(dāng)-x2+3x+4=-4時,解得:x3=$\frac{3+\sqrt{41}}{2}$,x4=$\frac{3-\sqrt{41}}{2}$,
∴P3($\frac{3+\sqrt{41}}{2}$,-4),P4($\frac{3-\sqrt{41}}{2}$,-4).
點評 此題屬于二次函數(shù)的綜合題,考查了待定系數(shù)法求函數(shù)解析式的知識、平行四邊形的性質(zhì)以及三角形面積問題.掌握分類討論思想的應(yīng)用是解此題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | a2•a4=a8 | B. | a3÷a2=a | C. | 2x2+x2=2x4 | D. | (-2a2b)3=-6a5b3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 10(1+x)2=16.9 | B. | 10(1+2x)=16.9 | C. | 10(1-x)2=16.9 | D. | 10(1-2x)=16.9 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 6 | B. | 4 | C. | 10 | D. | 12 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{{2}^{2}}=±2$ | B. | $±\sqrt{(-3)^{2}}=±3$ | C. | $-\sqrt{(-2)^{2}}=2$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | -2 | B. | 4 | C. | -2或4 | D. | -3或5 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com