分析 連接BD.由弦切角定理可知∠FBD=∠BAD,由同弧所對的圓周角相等可知:∠DBC=∠DAC,由角平分線的定義可知∠BAD=∠DAC,從而得到∠FBD=∠DBG,因?yàn)镈F⊥BC,DG⊥BE由角平分線的性質(zhì)可知FD=DG.
解答 解:如圖所示:連接BD.![]()
∵BE是圓O的切線,
∴∠FBD=∠BAD.
∵∠DBC=∠DAC,∠BAD=∠DAC,
∴∠FBD=∠DBG.
又∵DF⊥BC,DG⊥BE,
∴FD=DG.
點(diǎn)評 本題主要考查的是切線的性質(zhì),解答本題需要同學(xué)熟練掌握弦切角定理、圓周角定理以及角平分線的性質(zhì),證得∠FBD=∠DBG是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | (-3x3y3)2=3x6y6 | B. | a10•a2=a20 | ||
| C. | (-m2)5•(-m3)2=m16 | D. | (-$\frac{1}{2}$x2y4)3=-$\frac{1}{8}$x6y12 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1440}{x}=\frac{1440}{x+100}+10$ | B. | $\frac{1440}{x-100}-\frac{1440}{x}=10$ | ||
| C. | $\frac{1440}{x}=\frac{1440}{x-100}+10$ | D. | $\frac{1440}{x+100}-\frac{1440}{x}=10$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com