分析 由△ABC是等邊三角形,CD是∠ACB的平分線,利用三線合一的性質(zhì),可得AD=BD,又由DE∥BC,可得DE是△ABC的中位線,即可求得DE的長,易證得△DCE是等腰三角形,則可求得答案.
解答 解:∵△ABC是等邊三角形,CD是∠ACB的平分線,
∴AD=BD,∠ACD=∠BCD,
∵DE∥BC,
∴DE=$\frac{1}{2}$BC=$\frac{1}{2}$×4=2,∠EDC=∠BCD,
∴∠EDC=∠ACD,
∴EC=DE=$\frac{1}{2}$×4=2.
故答案為2.
點評 本題考查了等邊三角形的性質(zhì)、等腰三角形的判定與性質(zhì)以及三角形中位線的性質(zhì).注意由角平分線與平行線,可構造等腰三角形.
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 2$\sqrt{3}$-2 | B. | 2 | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | (1) | B. | (2) | C. | (3) | D. | (4) |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com