分析 (1)根據(jù)等邊三角形的性質(zhì)求出∠BAC=∠C=60°,AC=BC,求出AE=CD,根據(jù)SAS推出全等即可;
(2)根據(jù)全等三角形的性質(zhì)求出∠CAD=∠ABE,根據(jù)三角形外角性質(zhì)求出∠AOE=∠BAC=60°,即可得出答案.
解答 (1)證明:∵△ABC是等邊三角形,
∴∠BAC=∠C=60°,BC=AC,
∵BD=CE,
∴BC-BD=AC-CE,
∴AE=CD,
在△ACD和△BAE中
$\left\{\begin{array}{l}{AE=CD}\\{∠BAE=∠C=60°}\\{AB=AC}\end{array}\right.$
∴△ACD≌△BAE(SAS);
(2)解:∵△ACD≌△BAE,
∴∠CAD=∠ABE,
∴∠AOE=∠BAD+∠ABE=∠BAD+∠CAD=∠BAC=60°,
∴∠AOB=180°-60°=120°.
點(diǎn)評 本題考查了等邊三角形的性質(zhì),全等三角形的性質(zhì)和判定的應(yīng)用,能求出△ACD≌△BAE是解此題的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{3}$+$\sqrt{5}$=$\sqrt{8}$ | B. | $\sqrt{2}$×$\sqrt{3}$=$\sqrt{6}$ | C. | $\sqrt{(-3)^{2}}$=-3 | D. | $\sqrt{7}$-$\sqrt{5}$=$\sqrt{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 32與23 | B. | -3ab與ba | C. | 0.2a2b與$\frac{1}{5}{a^2}b$ | D. | a2b3與-a3b2 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com