分析 ①連接CD,由SAS定理可證△CDF和△ADE全等,證明DE=DF;
②由△CDF和△ADE全等得到∠CDF=∠EDA,根據(jù)∠ADE+∠EDC=90°,得到∠EDF=90°;
③當(dāng)E為AC中點,F(xiàn)為BC中點時,四邊形CEDF為正方形;
④由割補法可知四邊形CEDF的面積保持不變.
解答 解:①連接CD;![]()
∵△ABC是等腰直角三角形,
∴∠DCB=∠A=45°,CD=AD=DB;
在△ADE和△CDF中,
$\left\{\begin{array}{l}{AD=CD}\\{∠A=∠DCF}\\{AE=CF}\end{array}\right.$
∴△ADE≌△CDF(SAS),
∴ED=DF,①正確;
②∵△ADE≌△CDF,
∴∠CDF=∠EDA,![]()
∵∠ADE+∠EDC=90°,
∴∠EDC+∠CDF=∠EDF=90°,②正確;
③當(dāng)E、F分別為AC、BC中點時,DE⊥AC,DF⊥BC,又∠ACB=90°,
∴四邊形CEDF是矩形,
∵CE=CF,
∴四邊形CDFE是正方形,③錯誤;
④如圖2,分別過點D,作DM⊥AC,DN⊥BC,于點M,N,
則DM=DN,
在Rt△DME和Rt△DNF中,
$\left\{\begin{array}{l}{DM=DN}\\{DE=DF}\end{array}\right.$,
∴Rt△DME≌Rt△DNF(HL),
∴四邊形CEDF的面積等于正方形CMDN面積,故面積保持不變,④正確,
故答案為:①②④.
點評 此題主要考查了全等三角形的判定與性質(zhì)以及正方形、等腰三角形、直角三角形性質(zhì)等知識,根據(jù)圖形利用割補法可知四邊形CEDF的面積等于正方形CMDN面積是解題關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | a | B. | 3a | C. | 3a-6 | D. | 3a+6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com