分析 (1)由條件可證明△ADC≌△BEC,則可得到CD=CE,結(jié)合AB為直徑可證明∠DCE=90°,可判斷△CDE為等腰直角三角形;
(2)由條件可證明△COD為等邊三角形,則可求得CD=4,利用勾股定理可求得DE的長(zhǎng).
解答 解:
(1)△CDE為等腰直角三角形,
證明如下:
如圖1,連接AC、BC,![]()
則∠DAC=∠DBC,
∵AB為直徑,CO⊥AB,
∴△ABC為等腰直角三角形,
∴AC=BC,
在△ADC和△BEC中
$\left\{\begin{array}{l}{AD=BE}\\{∠DAC=∠EBC}\\{AC=BC}\end{array}\right.$
∴△ADC≌△BEC(SAS),
∴CD=CE,∠DCA=∠BCE,
∵∠ACB=90°,
∴∠ACE+∠BCE=90°,
∴∠DCA+∠ACE=90°,即∠DCE=90°,
∴△CDE為等腰直角三角形;
(2)如圖2,連接OD,![]()
則∠AOD=2∠ABD=2×15°=30°,
∵∠AOC=90°,
∴∠DOC=60°,且OD=OC=OA=4,
∴△OCD為等邊三角形,
∴CD=CE=OA=4,
在Rt△CDE中,由勾股定理可得DE=$\sqrt{C{D}^{2}+C{E}^{2}}$=$\sqrt{{4}^{2}+{4}^{2}}$=4$\sqrt{2}$.
點(diǎn)評(píng) 本題主要考查全等三角形的判定和性質(zhì),構(gòu)造全等三角形是解題的關(guān)鍵,在(2)中證明△OCD為等邊三角形是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 4 | B. | 3.5 | C. | 3 | D. | 2.5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
| 進(jìn)球(個(gè)數(shù)) | 8 | 7 | 6 | 5 | 4 | 3 |
| 人數(shù) | 2 | 1 | 4 | 7 | 8 | 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com