分析 (1)根據(jù)平行四邊形的性質(zhì)和全等三角形的證明方法證明即可;
(2)請連接EC、AF,由△AOE≌△COF,得到OE=OF,又AO=CO,所以四邊形AECF是平行四邊形.
解答 解:(1)∵四邊形ABCD是平行四邊形,
∴AO=OC,AB∥CD.
∴∠E=∠F.
∵在△AOE與△COF中,
$\left\{\begin{array}{l}{∠E=∠F}\\{∠AOE=∠COF}\\{AO=CO}\end{array}\right.$,
∴△AOE≌△COF(AAS);
(2)如圖,連接EC、AF,![]()
由(1)可知△AOE≌△COF,
∴OE=OF,
∵AO=CO,
∴四邊形AECF是平行四邊形.
點評 本題主要考查了全等三角形的性質(zhì)與判定、平行四邊形的性質(zhì),首先利用平行四邊形的性質(zhì)構(gòu)造全等條件,然后利用全等三角形的性質(zhì)解決問題.
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | $\left\{\begin{array}{l}x=2y+1\\ y=3-z\end{array}\right.$ | B. | $\left\{\begin{array}{l}xy=12\\ x+y=7\end{array}\right.$ | ||
| C. | $\left\{\begin{array}{l}x=3\\ y=4\end{array}\right.$ | D. | $\left\{\begin{array}{l}\frac{1}{x}+\frac{1}{y}=2\\ 3x-2y=4\end{array}\right.$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 3cm | B. | 6cm | C. | 9cm | D. | 12cm |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com