分析 在直角三角形中,利用勾股定理得到AB2-AC2+(AM2-MP2)=BC2+(MC2-MP2)①,AM2-MP2=AP2②,MC2+BC2-MP2=BM2-MP2=BP2③.把②③代入①證得結(jié)論.
解答 證明:∵△ABC是直角三角形,∠C=90°,
∴AB2=BC2+AC2,則AB2-AC2=BC2.
又∵在直角△AMP中,AP2=AM2-MP2,
∴AB2-AC2+(AM2-MP2)=BC2+(AM2-MP2).
又∵AM=CM,
∴AB2-AC2+(AM2-MP2)=BC2+(MC2-MP2),①
∵△APM是直角三角形,∴AM2=AP2+MP2,則AM2-MP2=AP2,②
∵△BPM與△BCM都是直角三角形,
∴BM2=BP2+MP2=MC2+BC2,
MC2+BC2-MP2=BM2-MP2=BP2,③
把②③代入①,得
AB2-AC2+AP2=BP2,即BP2=AP2+BC2.
點評 本題考查了勾股定理.正確利用等量代換是解題的難點.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{{\sqrt{5}}}{5}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{3}{4}$ | B. | $\frac{3}{5}$ | C. | $\frac{4}{3}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com