分析 (1)如圖1中,作EF∥AB交BC于F,只要證明△BDM≌△FEM即可.
(2)如圖2中,作EF∥AB交CB的延長(zhǎng)線于F,只要證明△BDM≌△FEM即可.
(3)如圖3中,作EF∥AB交CB的延長(zhǎng)線于F,由BD∥EF得$\frac{BD}{EF}=\frac{MD}{ME}$,再證明EF=EC即可.
解答 (1)如圖1中,猜想:DM=EM.
理由:作EF∥AB交BC于F,
∵AB=AC,
∴∠ABC=∠C,
∵EF∥AD,![]()
∴∠EFC=∠ABC,
∴∠C=∠EFC,
∴EF=EC,
∵BD=EC,
∴DB=EF,
∵EF∥AB,
∴∠D=∠MEF,
在△BDM和△FEM中,
$\left\{\begin{array}{l}{∠D=∠FEM}\\{∠BMD=∠EMF}\\{BD=EF}\end{array}\right.$,
∴△BDM≌△FEM,
∴DM=EM.
故答案為DM=EM.
(2)結(jié)論DM=EM.
理由:如圖2中,作EF∥AB交CB的延長(zhǎng)線于F,
∵AB=AC,
∴∠ABC=∠C,
∵EF∥AB,![]()
∴∠EFC=∠ABC,
∴∠C=∠EFC,
∴EF=EC,
∵BD=EC,
∴DB=EF,
∵EF∥AB,
∴∠D=∠MEF,
在△BDM和△FEM中,
$\left\{\begin{array}{l}{∠D=∠FEM}\\{∠BMD=∠EMF}\\{BD=EF}\end{array}\right.$,
∴△BDM≌△FEM,
∴DM=EM.
(3)如圖3中,作EF∥AB交CB的延長(zhǎng)線于F,![]()
∵EF∥AB,
∴∠F=∠ABC,
∵AB=AC,
∴∠ABC=∠C,
∴∠F=∠C,
∴EF=CE=4,
∵BD∥EF,
∴$\frac{BD}{EF}=\frac{MD}{ME}$,
∴$\frac{1}{4}$=$\frac{0.7}{EM}$,
∴EM=2.8,
故答案為2.8.
點(diǎn)評(píng) 本題考查全等三角形的判定和性質(zhì)、等腰三角形的判定和性質(zhì)、平行線分線段成比例定理等知識(shí),解題的關(guān)鍵是添加輔助線構(gòu)造全等三角形以及等腰三角形,屬于中考?碱}型.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com