分析 連接OE、AE,根據(jù)點(diǎn)C為OC的中點(diǎn)可得∠CEO=30°,繼而可得△AEO為等邊三角形,求出扇形AOE的面積,最后用扇形AOB的面積減去扇形COD的面積,再減去S空白AEC即可求出陰影部分的面積.
解答
解:連接OE、AE,
∵點(diǎn)C為OA的中點(diǎn),
∴∠CEO=30°,∠EOC=60°,
∴△AEO為等邊三角形,
∴S扇形AOE=$\frac{60π×{2}^{2}}{360}$=$\frac{2}{3}$π,
∴S陰影=S扇形AOB-S扇形COD-(S扇形AOE-S△COE)
=$\frac{90π×{2}^{2}}{360}$-$\frac{90π×{1}^{2}}{360}$-($\frac{2}{3}$π-$\frac{1}{2}$×1×$\sqrt{3}$)
=$\frac{3}{4}$π-$\frac{2}{3}$π+$\frac{\sqrt{3}}{2}$
=$\frac{π}{12}$+$\frac{\sqrt{3}}{2}$.
故答案為:$\frac{π}{12}$+$\frac{\sqrt{3}}{2}$.
點(diǎn)評(píng) 本題考查了扇形的面積計(jì)算,解答本題的關(guān)鍵是掌握扇形的面積公式:S=$\frac{nπ{R}^{2}}{360}$.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 55° | B. | 60° | C. | 70° | D. | 75° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | x>4 | B. | x≥4 | C. | x≤4 | D. | x≠4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (a5)2=a10 | B. | x16÷x4=x4 | C. | 2a2+3a2=6a4 | D. | b3•b3=2b3 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com