分析 (1)由∠BAC為直角,得到其他兩銳角互余,又根據AE與BD垂直,得到三角形ADF為直角三角形,故兩銳角也互余,根據同角的余角相等即可得證;
(2)過A、D分別做BC的垂線,設AG的長為1,得出與之相關聯(lián)的線段的長度,進而利用角的正切值相等得出∠DBH=∠FDH,即可得出結論.
解答
證明:(1)∵∠BAC=90°,
∴∠ABD+∠ADF=90°,
又AE⊥BD,∴∠AFD=90°,
∴∠DAF+∠ADF=90°,
∴∠ABD=∠CAF;
(2)過A、D分別做BC的垂線,垂足分別為G、H.
設AG=1,那么CG=1,DH=$\frac{1}{2}$,BH=$\frac{2}{3}$,
tan∠DBH=$\frac{1}{3}$,
又∵∠GAF=∠DBH,
∴GF=$\frac{1}{3}$AG=$\frac{1}{3}$,
FH=GH-GF=$\frac{1}{2}$-$\frac{1}{3}$=$\frac{1}{6}$,
tan∠FDH=$\frac{FH}{DH}$=$\frac{1}{3}$,
∴∠DBH=∠FDH
∵∠ADB=∠DBH+∠C,
∠CDF=∠FDH+∠CDH,
∴∠ADB=∠CDF
點評 本題主要考查了全等三角形的判定與性質,等腰三角形的性質以及由正切值判定兩個角相等,無論是證明還是計算題,都應該從不同角度思考,利用已學知識熟練求解.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 375cm2 | B. | 500cm2 | C. | 625cm2 | D. | 700cm2 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com