| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 根據(jù)正方形的性質和折疊的性質可得AD=DF,∠A=∠GFD=90°,于是根據(jù)“HL”判定Rt△ADG≌Rt△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE為直角三角形,可通過勾股定理列方程求出AG=4,BG=8,進而求出△BEF的面積,再抓住△BEF是等腰三角形,而△GED顯然不是等腰三角形,判斷③是錯誤的,問題得解.
解答 解:如圖,由折疊可知,DF=DC=DA,∠DFE=∠C=90°,
∴∠DFG=∠A=90°,
在Rt△ADG和Rt△FDG中,
$\left\{\begin{array}{l}{AD=DF}\\{DG=DG}\end{array}\right.$,
∴Rt△ADG≌Rt△FDG,故①正確;
∵正方形邊長是12,
∴BE=EC=EF=6,
設AG=FG=x,則EG=x+6,BG=12-x,
由勾股定理得:EG2=BE2+BG2,
即:(x+6)2=62+(12-x)2,
解得:x=4
∴AG=GF=4,BG=8,BG=2AG,故②正確;
BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,故③錯誤;
∵S△GBE=$\frac{1}{2}$×6×8=24,S△BEF=:S△BGE=EF:EG,
∴S△BEF=$\frac{6}{10}$×24=$\frac{72}{5}$,
故④正確.
綜上可知正確的結論的是3個.
故選C.
點評 本題考查了相似三角形的判定和性質、圖形的翻折變換的性質和正方形的性質,全等三角形的判定與性質,勾股定理,平行線的判定,三角形的面積計算,有一定的難度.
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | α+β+γ=360° | B. | α+β-γ=180° | C. | α+β+γ=180° | D. | α-β-γ=90° |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com