| A. | 2個 | B. | 3個 | C. | 4個 | D. | 5個 |
分析 取AD的中點(diǎn)F,連接EF.根據(jù)平行線的性質(zhì)可證得(1)(4)(5),根據(jù)梯形中位線定理可證得(3)正確.根據(jù)全等三角形全等的判定可證得(2)的正誤,即可得解.
解答
解:如圖:取AD的中點(diǎn)F,連接EF.
∵∠B=∠C=90°,
∴AB∥CD;[結(jié)論(5)]
∵E是BC的中點(diǎn),F(xiàn)是AD的中點(diǎn),
∴EF∥AB∥CD,2EF=AB+CD(梯形中位線定理)①;
∴∠CDE=∠DEF(兩直線平等,內(nèi)錯角相等),
∵DE平分∠ADC,
∴∠CDE=∠FDE=∠DEF,
∴DF=EF;
∵F是AD的中點(diǎn),∴DF=AF,
∴AF=DF=EF②,
由①得AF+DF=AB+CD,即AD=AB+CD;[結(jié)論(3)]
由②得∠FAE=∠FEA,
由AB∥EF可得∠EAB=∠FEA,
∴∠FAE=∠EAB,即EA平分∠DAB;[結(jié)論(1)]
由結(jié)論(1)和DE平分∠ADC,且DC∥AB,可得∠EDA+∠DAE=90°,則∠DEA=90°,即AE⊥DE;[結(jié)論(4)].
由以上結(jié)論及三角形全等的判定方法,無法證明△EBA≌△DCE.
正確的結(jié)論有4個.
故選C.
點(diǎn)評 本題考查了平行線的判定及性質(zhì)、梯形中位線定理、等腰三角形的性質(zhì)、全等三角形的判定等知識點(diǎn),是一道難度較大的綜合題型.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{a}=\frac{c}nfvjbzl$ | B. | $\frac{a}=\fracl9ndffl{c}$ | C. | $\frac{a}{c}=\frachpr7rnb$ | D. | $\frac{a}7bbr9pf=\frac{c}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com