分析 根據(jù)條件可以求出△ADE和△BCE為等腰三角形,就可以求出∠AED=∠BEC=15°,從而可以求出∠AEB的度數(shù).
解答 解:∵四邊形ABCD是正方形,
∴AD=CD=BC,∠ADC=∠BCD=90°.
∵△DCE是等邊三角形,
∴CD=DE=CE,∠CDE=∠DCE=60°.
∴AD=ED,BC=CE,∠ADE=150°,∠BCE=150°.
∴∠AED=∠BEC=15°,
∴∠AEB=60°-15°-15°=30°.
點評 本題考查了正方形的性質(zhì)的運用,等邊三角形的性質(zhì)的運用,等腰三角形的性質(zhì)的運用,解答時求出∠AED和∠BEC的度數(shù)很關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | ($\sqrt{2}$-1):1 | B. | ($\sqrt{2}$+1):1 | C. | $\sqrt{2}$:1 | D. | 2:1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\left\{\begin{array}{l}{5x=6y}\\{x=2y-40}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{5x=6y}\\{x=2y+40}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{6x=5y}\\{x=2y+40}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{6x=5y}\\{x=2y-40}\end{array}\right.$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com