分析 利用等腰三角形的性質(zhì)求得BD=$\frac{1}{2}$BC=8cm.然后在直角△ABD中,利用勾股定理來(lái)求AD的長(zhǎng)度,進(jìn)而可求出三角形的面積.
解答 解:如圖,作AD⊥BC于點(diǎn)D,![]()
∵△ABC中,AB=AC=17,BC=16,
∴BD=$\frac{1}{2}$BC=8,
∴在直角△ABD中,由勾股定理,得AD=$\sqrt{1{7}^{2}-{8}^{2}}$=15,
∴S△ABC=$\frac{1}{2}$×15×16=120,
故答案為:120.
點(diǎn)評(píng) 此題主要考查了勾股定理,等腰三角形的性質(zhì)的理解及運(yùn)用.利用等腰三角形“三線合一”的性質(zhì)求得AD的長(zhǎng)度是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 如果∠2=∠4,那么AB∥CD | B. | 如果∠1=∠3,那么AB∥CD | ||
| C. | 如果∠BAD+∠D=180,那么AB∥CD | D. | 如果∠BAD+∠B=180,那么AD∥CD |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 3m4÷m3=3m2 | B. | m+m2=m3 | C. | (m+n)(m-n)=m2-n2 | D. | ($\frac{m}{2}$)3=$\frac{{m}^{3}}{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com