分析 (1)由∠DFC=90°,∠C=30°,證出DF=t=AE;
(2)先證明四邊形AEFD為平行四邊形.得出AB=5,再求出AC=2AB=10,AD=AC-DC=10-2t,若△DEF為等邊三角形,則?AEFD為菱形,得出AE=AD,t=10-2t,求出t=$\frac{10}{3}$;
(3)當(dāng)∠EDF=90°時(shí),四邊形EBFD為矩形.根據(jù)含30度角直角三角形的性質(zhì)得到等量關(guān)系:AD=2AE.即10-2t=2t.由此求得t的值.
解答 解:(1)證明:在△DFC中,∠DFC=90°,∠C=30°,DC=2t,
∴DF=t.
又∵AE=t,
∴AE=DF;
(2)能; 理由如下:
∵AB⊥BC,DF⊥BC,
∴AE∥DF.
又AE=DF,
∴四邊形AEFD為平行四邊形.
∵AB=BC•tan30°=5$\sqrt{3}$×$\frac{\sqrt{3}}{3}$=5,
∴AC=2AB=10,
∴AD=AC-DC=10-2t,
若使△DEF能夠成為等邊三角形,
則平行四邊形AEFD為菱形,則AE=AD,
∴t=10-2t,
∴t=$\frac{10}{3}$;
即當(dāng)t=$\frac{10}{3}$時(shí),△DEF為等邊三角形;
(3)當(dāng)t=$\frac{5}{2}$時(shí),△DEF為直角三角形;理由如下:
當(dāng)∠EDF=90°時(shí),四邊形EBFD為矩形.
在Rt△AED中,∠ADE=∠C=30°,
∴AD=2AE.即10-2t=2t,
∴t=$\frac{5}{2}$.
∴當(dāng)t=$\frac{5}{2}$時(shí),△DEF為直角三角形.
點(diǎn)評(píng) 本題綜合考查了平行四邊形、菱形、矩形的判定與性質(zhì)以及銳角三角函數(shù)的知識(shí);考查學(xué)生綜合運(yùn)用定理進(jìn)行推理和計(jì)算的能力.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | x=3 | B. | x=-3 | C. | $x=\frac{1}{3}$ | D. | $x=-\frac{1}{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com