如圖,在△ABC中,∠BAC=90°,AB=AC,點D是AB的中點,連接CD,過B作BE⊥CD交CD的延長線于點E,連接AE,過A作AF⊥AE交
CD于點F.
(1)求證:AE=AF; (2)求證:CD=2BE+DE.
![]()
(1)
∵∠BAC=90°, AF⊥AE
∴∠EA
B+∠BAF=∠BA
F+∠FAC=90°
∴∠EAB=∠FAC
∵BE⊥CD
∴∠BEC=90°
∴∠EBD+∠EDB=∠ADC+∠ACD=90°
∵∠EDB=∠ADC
∴∠
EBD =∠ACD
∵AB=AC
∴△AEB≌△AFC
∴ AE=A
F
(2)
作AG⊥EC,垂足為G
∵AG⊥EC, BE⊥CD
∴∠BED=∠AGD=90°
∵點是AB的中點![]()
∴BD=AD
∵∠BED=∠AGD
∴△BED≌△AGD
∴ED=GD,BE=AG
∵AE=AF
∴∠AEF=∠AFE=45°
∴∠FAG=45°
∴∠GAF=∠GFA
∴GA=GF
∴CF=BE=AG=GF
∵CD=DG+GF+FC
∴CD=DE+BE+BE
∴CD=2BE+DE
科目:初中數(shù)學 來源: 題型:
如圖,已知AB=DC,AD=BC,E,F在DB上兩點且BF=DE,若∠AEB=120°,
∠ADB=30°,則∠BCF= ( 。
A.150° B.40° C.80° D.90°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
數(shù)學課上,李老師出示了如下框中的題目.
![]()
小敏與同桌小聰討論后,進行了如下解答:
(1) 特殊情況•探索結論:當點E為AB的中點時,如圖1,確定線段AE與的
DB大小關系.請你直接寫出結論:AE DB(填“>”,“<”或“=”).
(2)特例啟發(fā),解答題目
解:題目中,AE與DB的大小關系是:AE DB(填“>”,“<”或“=”).理由
如下:如圖2,過點E作EF∥BC,交AC于點F,(請你完成以下解答過程)
(3)拓展結論,設計新題
在等邊三角形ABC中,點E在直線AB上,點D在直線BC上,且ED=EC.若△ ABC
的邊長為1,AE=2,求CD的長(請你直接寫出結果).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在△ABC中,∠B與∠C的平分線交于點O,過點O作DE∥BC,分別交AB、AC于點D、E.若AB=5,AC=4,則△ADE的周長是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,點E、F分別是□ABCD的邊BC、AD上的點,且BE=DF.
(1) 求證:四邊形AECF是
平行四邊形;
(2) 若AE=BE,∠BAC=90°,試判斷四邊形AECF的形狀,并說明理由.
![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com