欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

8.某中學(xué)庫存若干套桌椅,準(zhǔn)備修理.現(xiàn)有甲、乙兩木工組,甲每天修理桌椅16套,乙每天修理桌椅比甲多8套,甲單獨(dú)修完這些桌椅比乙單獨(dú)修完多用20天,學(xué)校每天付甲組80元修理費(fèi),付乙組120元的修理費(fèi).
(1)該中學(xué)庫存多少套桌椅?
(2)在修理過程中,學(xué)校要派一名工人進(jìn)行質(zhì)量監(jiān)督,學(xué)校負(fù)擔(dān)他每天10元生活補(bǔ)助費(fèi),現(xiàn)有三種修理方案:a,由甲單獨(dú)修理;b,由乙單獨(dú)修理;c,甲、乙合作同時(shí)修理.你認(rèn)為哪種方案省時(shí)又省錢?為什么?

分析 (1)通過理解題意可知本題的等量關(guān)系,即甲單獨(dú)修完這些桌凳的天數(shù)=乙單獨(dú)修完的天數(shù)+20天,列方程求解即可;
(2)分別求出三種方案的總費(fèi)用,比較后即可得.

解答 解:(1)設(shè)該中學(xué)庫存x套桌椅,
則甲需要$\frac{x}{16}$天,乙需要$\frac{x}{16+8}$天,
根據(jù)題意得:$\frac{x}{16}$-$\frac{x}{16+8}$=20,
解得:x=960,
答:該中學(xué)庫存960套桌椅;

(2)方案a的費(fèi)用為(80+10)×$\frac{960}{16}$=5400(元),
方案b的費(fèi)用為(120+10)×$\frac{960}{16+8}$=5200(元),
方案c的費(fèi)用為(80+120+10)×$\frac{960}{16+16+8}$=5040(元),
綜上,方案c的費(fèi)用省時(shí)又省力.

點(diǎn)評 本題考查了一元一次方程的應(yīng)用,解題的關(guān)鍵是找到等量關(guān)系:甲單獨(dú)修完這些桌凳的天數(shù)=乙單獨(dú)修完的天數(shù)+20天.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

18.(1)(1-π)×$\root{3}{27}$-($\frac{1}{7}$)-1+|-2|
(2)先化簡,再求值:$\frac{{a}^{2}-2a}{{a}^{2}-1}$÷(a-1-$\frac{2a-1}{a+1}$,其中a=3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

19.如圖1,在邊長為4的正△ABC中,點(diǎn)P以每秒1cm的速度從點(diǎn)A出發(fā),沿折線AB-BC運(yùn)動(dòng),到點(diǎn)C停止.過點(diǎn)P作PD⊥AC,垂足為D,PD的長度y(cm)與點(diǎn)P的運(yùn)動(dòng)時(shí)間x(秒)的函數(shù)圖象如圖2所示.當(dāng)點(diǎn)P運(yùn)動(dòng)5.5秒時(shí),PD的長是( 。
A.$\frac{5\sqrt{3}}{4}$cmB.$\frac{5\sqrt{3}}{2}$cmC.2$\sqrt{3}$cmD.3$\sqrt{3}$cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.【提出問題】已知如圖1,P是∠ABC、∠ACB的角平分線的交點(diǎn),你能找到∠P、∠A的關(guān)系嗎?
【分析問題】在解決這個(gè)問題時(shí),某小組同學(xué)是這樣做的:
先賦予∠A幾個(gè)特殊值:
當(dāng)∠A=80°時(shí),計(jì)算出∠P=130°;
當(dāng)∠A=40°時(shí),計(jì)算出∠P=110°;
當(dāng)∠A=100°時(shí),計(jì)算出∠P=140°;
…由以上特例猜想∠P與∠A的關(guān)系為:∠P=90°+$\frac{1}{2}$∠A.再證明這一結(jié)論:
證明:∵點(diǎn)P是∠ABC、∠ACB的角平分線的交點(diǎn).
∴∠PBC=$\frac{1}{2}$∠ABC;∠PCB=$\frac{1}{2}$∠ACB
∴∠PBC+∠PCB=$\frac{1}{2}$(∠ABC+∠ACB)
又∵∠A+(∠ABC+∠ACB)=180°
∴∠ABC+∠ACB=180°-∠A
∴∠PBC+∠PCB=$\frac{1}{2}$(∠ABC+∠ACB)
=$\frac{1}{2}$(180°-∠A)
∴∠P=180°-(∠PBC+∠PCB)
=180°-$\frac{1}{2}$(180°-∠A)
=90°+$\frac{1}{2}$∠A
【解決問題】請運(yùn)用以上解決問題的“思想方法”解決下面的幾個(gè)問題:
(1)如圖2,若點(diǎn)P時(shí)∠ABC、∠ACB的三等分線的交點(diǎn),即∠PBC=$\frac{1}{3}$∠ABC,∠PCB=$\frac{1}{3}$∠ACB,猜測∠P與∠A的關(guān)系為∠P=$\frac{1}{3}$∠A+$\frac{2}{3}$×180°,證明你的結(jié)論.
(2)若點(diǎn)P時(shí)∠ABC、∠ACB的四等分線的交點(diǎn),即∠PBC=$\frac{1}{4}$∠ABC,∠PCB=$\frac{1}{4}$∠ACB,則∠P與∠A的關(guān)系為∠P=$\frac{1}{4}$∠A+$\frac{3}{4}$×180°.(直接寫出答案,不需要證明)
(3)若點(diǎn)P時(shí)∠ABC、∠ACB的n等分線的交點(diǎn),即∠PBC=$\frac{1}{n}$∠ABC,∠PCB=$\frac{1}{n}$∠ACB,則∠P與∠A的關(guān)系為$\frac{n-1}{n}$•180°+$\frac{1}{n}$∠A.(直接寫出答案,不需要證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在平面直角坐標(biāo)系中四邊形ABCD為菱形,邊AD在y軸上.其中A(0,1),B(-$\sqrt{3}$,0),雙曲線y=$\frac{m}{x}$經(jīng)過點(diǎn)C.
(1)求反比例函數(shù)的解析式;
(2)連接CO并延長交雙曲線于點(diǎn)E,連接DE,P是雙曲線在第一象限上的一個(gè)動(dòng)點(diǎn),滿足S△BDP=2S△CDE,求點(diǎn)P的坐標(biāo);
(3)將直線BD沿x軸向右平移,交x軸于點(diǎn)K,交射線BA于點(diǎn)H,問是否存在某一時(shí)刻,使得△KOH為等腰三角形?若存在求出線段OK的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

13.如圖所示,直線AD和BC被直線AB所截,∠1和∠2是同位角;∠4、∠FAC與∠2也是同位角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

20.已知一次函數(shù)y=kx+b經(jīng)過第二,三,四象限,則反比例函數(shù)y=-$\frac{k}{x}$圖象在第一、三象限.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.解方程組:$\left\{\begin{array}{l}{x+2z=3}\\{2y+z=7}\\{2x-y-z=-5}\end{array}\right.$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

18.已知:如圖,Rt△ABC中,AC=BC,∠ACB=90°,CF交AB于點(diǎn)E,BD⊥CF于點(diǎn)D,AF⊥CF.
求證:BD=CF.

查看答案和解析>>

同步練習(xí)冊答案