分析 (1)過P作PQ平行于AB,由AB與CD平行,得到PQ與CD平行,利用兩直線平行內(nèi)錯角相等得到兩對角相等,再由∠EPF=∠1+∠2,等量代換就可得證;
(2)先根據(jù)三角形外角的性質(zhì)得出∠P=∠BGP-∠BEP,再由∠P=∠PGB-∠BEP可知,∠PFD=∠PGB,由此可得出結(jié)論;
(3)由(1)中的結(jié)論∠EPF=∠BEP+∠PFD,設(shè)設(shè)∠PFD=x,則∠BEP=90°-x,根據(jù)∠PEG=∠BEP=90°-x,利用平角定義表示出∠AEG,即可求出所求比值.
解答
解:(1)過P作PQ∥AB,
∵AB∥CD,
∴PQ∥CD,
∴∠BEP=∠1,∠2=∠PFD,
∵∠EPF=∠1+∠2,
∴∠EPF=∠BEP+∠PFD;
(2)∵∠BGP是△PEG的外角,
∴∠P=∠BGP-∠BEP.![]()
∵∠P=∠PGB-∠BEP,
∴∠PFD=∠PGB,
∴AB∥CD;
(3)由(1)的結(jié)論∠EPF=∠BEP+∠PFD=90°,
設(shè)∠PFD=x,則∠BEP=90°-x,
∵∠PEG=∠BEP=90°-x,
∴∠AEG=180°-2(90°-x)=2x,則$\frac{∠AEG}{∠PFD}$=$\frac{2x}{x}$=2
點評 本題考查的是平行線的判定與性質(zhì),熟知平行線的判定定理與性質(zhì)、三角形外角的性質(zhì)是解答此題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 有一條直角邊對應(yīng)相等的兩個直角三角形全等 | |
| B. | 腰長相等的兩個等腰三角形全等 | |
| C. | 斜邊相等的兩個等腰直角三角形全等 | |
| D. | 兩個銳角對應(yīng)相等的兩個直角三角形全等 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{3}{20}$ | B. | $\frac{3}{10}$ | C. | $\frac{2}{5}$ | D. | $\frac{7}{20}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 4 | B. | 5 | C. | 10 | D. | 3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | (6,-4) | B. | (5,2) | C. | (-3,-6) | D. | (-3,4) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com