分析 由AB1為邊長(zhǎng)為2的等邊三角形ABC的高,利用三線合一得到B1為BC的中點(diǎn),求出BB1的長(zhǎng),利用勾股定理求出AB1的長(zhǎng),進(jìn)而求出第一個(gè)等邊三角形AB1C1的面積,同理求出第二個(gè)等邊三角形AB2C2的面積,依此類推,得到第n個(gè)等邊三角形ABnCn的面積.
解答 解:∵等邊三角形ABC的邊長(zhǎng)為2,AB1⊥BC,
∴BB1=1,AB=2,
根據(jù)勾股定理得:AB1=$\sqrt{3}$,
∴第一個(gè)等邊三角形AB1C1的面積為:${S}_{1}=\frac{1}{2}×\frac{\sqrt{3}}{4}×(\sqrt{3})^{2}=\frac{\sqrt{3}}{2}×(\frac{3}{4})^{1}$;
∵等邊三角形AB1C1的邊長(zhǎng)為 $\sqrt{3}$,AB2⊥B1C1,
∴B1B2=$\frac{\sqrt{3}}{2}$,AB1=$\sqrt{3}$,
根據(jù)勾股定理得:AB2=$\frac{3}{2}$,
∴第二個(gè)等邊三角形AB2C2的面積為${S}_{2}=\frac{1}{2}×\frac{\sqrt{3}}{4}×(\frac{3}{2})^{2}=\frac{\sqrt{3}}{2}×(\frac{3}{4})^{2}$;
依此類推,第n個(gè)等邊三角形ABnCn的面積為 $\frac{\sqrt{3}}{2}×(\frac{3}{4})^{n}$.
故答案為$\frac{\sqrt{3}}{2}×(\frac{3}{4})^{n}$.
點(diǎn)評(píng) 此題考查了等邊三角形的性質(zhì),屬于規(guī)律型試題,熟練掌握等邊三角形的性質(zhì)是解本題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 80° | B. | 90° | C. | 100° | D. | 110° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (45,13) | B. | (45,9) | C. | (45,22) | D. | (45,0) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com