| 已知函數(shù)f(x)=lnx+ax+b在x=6處的切線的傾斜角為,則a的值( 。 |
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)=lnx+ax+b在x=6處的切線的傾斜角為
,則a的值( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知函數(shù)f(x)=lnx+ax+b在x=6處的切線的傾斜角為
,則a的值( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2011-2012學(xué)年福建省莆田二中高二(下)期末數(shù)學(xué)試卷(文科)(解析版)
題型:選擇題
已知函數(shù)f(x)=lnx+ax+b在x=6處的切線的傾斜角為

,則a的值( )
A.-

B.-

C.-

D.-

查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2011-2012學(xué)年廣東省廣州市真光中學(xué)等六校協(xié)作體高三第二次聯(lián)考數(shù)學(xué)試卷(文科)(解析版)
題型:解答題
已知函數(shù)f(x)=ax•lnx+b(a,b∈R),在點(diǎn)(e,f(e))處的切線方程是2x-y-e=0(e為自然對(duì)數(shù)的底).
(1)求實(shí)數(shù)a,b的值及f(x)的解析式;
(2)若t是正數(shù),設(shè)h(x)=f(x)+f(t-x),求h(x)的最小值;
(3)若關(guān)于x的不等式xlnx+(6-x)ln(6-x)≥ln(k2-72k)對(duì)一切x∈(0,6)恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2011-2012學(xué)年廣東省廣州市真光中學(xué)等六校協(xié)作體高三第二次聯(lián)考數(shù)學(xué)試卷(理科)(解析版)
題型:解答題
已知函數(shù)f(x)=ax•lnx+b(a,b∈R),在點(diǎn)(e,f(e))處的切線方程是2x-y-e=0(e為自然對(duì)數(shù)的底).
(1)求實(shí)數(shù)a,b的值及f(x)的解析式;
(2)若t是正數(shù),設(shè)h(x)=f(x)+f(t-x),求h(x)的最小值;
(3)若關(guān)于x的不等式xlnx+(6-x)ln(6-x)≥ln(k2-72k)對(duì)一切x∈(0,6)恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)f(x)=ax•lnx+b(a,b∈R),在點(diǎn)(e,f(e))處的切線方程是2x-y-e=0(e為自然對(duì)數(shù)的底).
(1)求實(shí)數(shù)a,b的值及f(x)的解析式;
(2)若t是正數(shù),設(shè)h(x)=f(x)+f(t-x),求h(x)的最小值;
(3)若關(guān)于x的不等式xlnx+(6-x)ln(6-x)≥ln(k2-72k)對(duì)一切x∈(0,6)恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:廣東模擬
題型:解答題
已知函數(shù)f(x)=ax•lnx+b(a,b∈R),在點(diǎn)(e,f(e))處的切線方程是2x-y-e=0(e為自然對(duì)數(shù)的底).
(1)求實(shí)數(shù)a,b的值及f(x)的解析式;
(2)若t是正數(shù),設(shè)h(x)=f(x)+f(t-x),求h(x)的最小值;
(3)若關(guān)于x的不等式xlnx+(6-x)ln(6-x)≥ln(k2-72k)對(duì)一切x∈(0,6)恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
(2012•廣東模擬)已知函數(shù)f(x)=ax•lnx+b(a,b∈R),在點(diǎn)(e,f(e))處的切線方程是2x-y-e=0(e為自然對(duì)數(shù)的底).
(1)求實(shí)數(shù)a,b的值及f(x)的解析式;
(2)若t是正數(shù),設(shè)h(x)=f(x)+f(t-x),求h(x)的最小值;
(3)若關(guān)于x的不等式xlnx+(6-x)ln(6-x)≥ln(k2-72k)對(duì)一切x∈(0,6)恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>