欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

函數(shù) f(x)=lnx在點(diǎn) M(x0,f(x0))處的切線與直線y=
1
2
x+m
平行,則x0=(  )
A.
1
ln2
B.ln
1
2
C.
1
2
D.2
D
請?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù) f(x)=lnx在點(diǎn) M(x0,f(x0))處的切線與直線y=
1
2
x+m
平行,則x0=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù) f(x)=lnx在點(diǎn) M(x0,f(x0))處的切線與直線y=
1
2
x+m
平行,則x0=( 。
A.
1
ln2
B.ln
1
2
C.
1
2
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx+x2
(1)若函數(shù)g(x)=f(x)-ax在其定義域內(nèi)為增函數(shù),求實(shí)數(shù)a的取值范圍.
(2)在(1)條件下若a>1,h(x)=x3-3ax,x∈[1,2],求h(x)的最小值;
(3)設(shè)F(x)=2f(x)-3x2-kx(k∈R),若函數(shù)F(x)存在兩個(gè)零點(diǎn)m,n(0<m<n)且2x0=m+n,證明:函數(shù)F(x)在點(diǎn)(x0,f(x0))處的切線不可能平行于x軸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx+x2
(Ⅰ)若函數(shù)g(x)=f(x)-ax在其定義域內(nèi)為增函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅱ)在(Ⅰ)的條件下,若a>1,h(x)=e3x-3aexx∈[0,ln2],求h(x)的極小值;
(Ⅲ)設(shè)F(x)=2f(x)-3x2-kx(k∈R),若函數(shù)F(x)存在兩個(gè)零點(diǎn)m,n(0<m<n),且2x0=m+n.問:函數(shù)F(x)在點(diǎn)(x0,F(xiàn)(x0))處的切線能否平行于x軸?若能,求出該切線方程;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx+x2
(Ⅰ)若函數(shù)g(x)=f(x)-ax在定義域內(nèi)為增函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅱ)設(shè)F(x)=2f(x)-3x2-kx(k∈R),若函數(shù)F(x)存在兩個(gè)零點(diǎn)m,n(0<m<n),且滿足2x0=m+n,問:函數(shù)F(x)在(x0,F(xiàn)(x0))處的切線能否平行于x軸?若能,求出該切線方程;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=lnx+x2
(Ⅰ)若函數(shù)g(x)=f(x)-ax在定義域內(nèi)為增函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅱ)設(shè)F(x)=2f(x)-3x2-kx(k∈R),若函數(shù)F(x)存在兩個(gè)零點(diǎn)m,n(0<m<n),且滿足2x0=m+n,問:函數(shù)F(x)在(x0,F(xiàn)(x0))處的切線能否平行于x軸?若能,求出該切線方程;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:陜西省模擬題 題型:解答題

已知函數(shù)f(x)=lnx-ax2+(a-1)x(a∈R且a≠0),
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)記函數(shù)y=F(x)的圖象為曲線C。設(shè)點(diǎn)A(x1,y1),B(x2,y2)是曲線C上的不同兩點(diǎn)。如果在曲線C上存在點(diǎn)M(x0,y0),使得:①;②曲線C在點(diǎn)M處的切線平行于直線AB,則稱函數(shù)F(x)存在“中值相依切線”。試問:函數(shù)f(x)是否存在“中值相依切線”,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:0127 期中題 題型:解答題

已知函數(shù)f(x)=lnx,g(x)=(a>0),設(shè)F(x)=f(x)+g(x),
(Ⅰ)求函數(shù)F(x)的單調(diào)區(qū)間;
(Ⅱ)若以函數(shù)y=F(x)(x∈(0,3])圖像上任意一點(diǎn)P(x0,y0)為切點(diǎn)的切線的斜率k≤恒成立,求實(shí)數(shù)a的最小值;
(Ⅲ)是否存在實(shí)數(shù)m,使得函數(shù)y=+m-1的圖像與函數(shù)y=f(1+x2)的圖像恰有四個(gè)不同的交點(diǎn)?若存在,求出實(shí)數(shù)m的取值范圍;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=lnx-
1
2
ax2-6x

(Ⅰ)當(dāng)a=b=
1
2
時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)令F(x)=f(x)+
1
2
ax2+bx+
a
x
(0
<x≤3),其圖象上任意一點(diǎn)P(x0,y0)處切線的斜率k≤
1
2
恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)當(dāng)a=0,b=-1時(shí),方程f(x)=mx在區(qū)間[1,e2]內(nèi)有唯一實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-
1
2
ax2(a∈R,a≠0)

(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)已知點(diǎn)A(1,-
1
2
a),設(shè)B(x1,y1)(x1>1)是曲線C:y=f(x)
圖角上的點(diǎn),曲線C上是否存在點(diǎn)M(x0,y0)滿足:①x0=
1+x1
2
;②曲線C在點(diǎn)M處的切線平行于直線AB?請說明理由.

查看答案和解析>>


同步練習(xí)冊答案